Science Reviews - Biology, 2024, 3(4), 24-30 L.M.Whitehouse
1
The effect of thermal stress on fish development: a
mini-review
L.M.Whitehouse PhD, Independent Researcher, France
ORCID: https://orcid.org/0000-0001-5385-7591
Scopus: https://www.scopus.com/authid/detail.uri?authorId=57195605595
References
1. Ashaf-Ud-Doulah, M., Islam, S. M., Zahangir, M. M., Islam, M. S., Brown, C., & Shahjahan, M.
(2021). Increased water temperature interrupts embryonic and larval development of Indian major
carp rohu Labeo rohita. Aquaculture International, 29, 711-722.
2. Barrionuevo, W.R. and Burggren, W.W., 1999. O2 consumption and heart rate in developing
zebrafish (Danio rerio): influence of temperature and ambient O2. American Journal of Physiology-
Regulatory, Integrative and Comparative Physiology, 276(2), pp.R505-R513.
3. Becker, C.D. and Genoway, R.G., 1979. Evaluation of the critical thermal maximum for determining
thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4, pp.245-256.
4. Bessa, E., Brandão, M.L. and GonçalvesdeFreitas, E., 2022. Integrative approach on the diversity of
nesting behaviour in fishes. Fish and Fisheries, 23(3), pp.564-583.
5. Bestgen, K.R. and Williams, M.A., 1994. Effects of fluctuating and constant temperatures on early
development and survival of Colorado squawfish. Transactions of the American Fisheries Society, 123(4),
pp.574-579.
6. Bilyk, K.T., Evans, C.W. and DeVries, A.L., 2012. Heat hardening in Antarctic notothenioid
fishes. Polar biology, 35, pp.1447-1451.
7. Clarkson, M., Taylor, J. F., McStay, E., Palmer, M. J., Clokie, B. G. J., & Migaud, H. (2021). A
temperature shift during embryogenesis impacts prevalence of deformity in diploid and triploid
Atlantic salmon (Salmo salar L.). Aquaculture Research, 52(3), 906-923.
8. Corey, E., Linnansaari, T., Cunjak, R.A. and Currie, S., 2017. Physiological effects of
environmentally relevant, multi-day thermal stress on wild juvenile Atlantic salmon (Salmo
salar). Conservation physiology, 5(1), p.cox014.
9. Diosio, G., Campos, C., Valente, L. M. P., Conceição, L. E. C., Cancela, M. L., & Gavaia, P. J. (2012).
Effect of egg incubation temperature on the occurrence of skeletal deformities in Solea senegalensis. Journal
of Applied Ichthyology, 28(3), 471-476.
10. Grinder, R.M., Bassar, R.D. and Auer, S.K., 2020. Upper thermal limits are repeatable in
Trinidadian guppies. Journal of Thermal Biology, 90, p.102597.
11. Hansen, T.K. and FalkPetersen, I.B., 2001. The influence of rearing temperature on early
development and growth of spotted wolffish Anarhichas minor (Olafsen). Aquaculture research, 32(5),
pp.369-378.
12. Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., Mei, H., Liu, J., Wang, W. and Liu, Q., 2022. Heat
shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm, 3(3),
p.e161.
13. Iwama, G.K., Vijayan, M.M., Forsyth, R.B. and Ackerman, P.A., 1999. Heat shock proteins and
physiological stress in fish. American Zoologist, 39(6), pp.901-909.
L.M.Whitehouse Science Reviews - Biology, 2024, 3(4), 24-30
2
14. Islam, M.J., Kunzmann, A. and Slater, M.J., 2022. Responses of aquaculture fish to climate
changeinduced extreme temperatures: A review. Journal of the World Aquaculture Society, 53(2),
pp.314-366.
15. Jeyachandran, S., Chellapandian, H., Park, K. and Kwak, I.S., 2023. A review on the involvement
of heat shock proteins (extrinsic chaperones) in response to stress conditions in aquatic organ-
isms. Antioxidants, 12(7), p.1444.
16. Karjalainen, J., Keskinen, T., Pulkkanen, M. and Marjomäki, T.J., 2015. Climate change alters the
egg development dynamics in cold-water adapted coregonids. Environmental Biology of Fishes, 98,
pp.979-991.
17. Kaufmann, R. and Wieser, W., 1992. Influence of temperature and ambient oxygen on the
swimming energetics of cyprinid larvae and juveniles. In Environmental biology of European cyprinids:
Papers from the workshop on ‘The Environmental Biology of Cyprinids’ held at the University of Salzburg,
Austria, in September 1989 (pp. 87-96). Springer Netherlands.
18. Koumoundouros, G., Divanach, P., & Kentouri, M. (1999). Ontogeny and allometric plasticity of
Dentex dentex (Osteichthyes: Sparidae) in rearing conditions. Marine Biology, 135, 561-572.
19. Laurel, B. J., Hurst, T. P., Copeman, L. A., & Davis, M. W. (2008). The role of temperature on the
growth and survival of early and late hatching Pacific cod larvae (Gadus macrocephalus). Journal of
Plankton Research, 30(9), 1051-1060.
20. Lim, M.Y.T., Manzon, R.G., Somers, C.M., Boreham, D.R. and Wilson, J.Y., 2017. The effects of
fluctuating temperature regimes on the embryonic development of lake whitefish (Coregonus
clupeaformis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 214,
pp.19-29.
21. LinaresCasenave, J., Werner, I., Van Eenennaam, J. P., & Doroshov, S. I. (2013). Temperature
stress induces notochord abnormalities and heat shock proteins expression in larval green sturgeon
(A cipenser medirostris A yres 1854). Journal of Applied Ichthyology, 29(5), 958-967.
22. Little, A.G., Loughland, I. and Seebacher, F., 2020. What do warming waters mean for fish
physiology and fisheries?. Journal of Fish Biology, 97(2), pp.328-340.
23. Morgan, R., Finnøen, M.H. and Jutfelt, F., 2018. CTmax is repeatable and doesn’t reduce growth in
zebrafish. Scientific reports, 8(1), p.7099.
24. Pepin, P., 1991. Effect of temperature and size on development, mortality, and survival rates of
the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sci-
ences, 48(3), pp.503-518.
25. Pörtner, H.O. and Peck, M.A., 2010. Climate change effects on fishes and fisheries: towards a cause
andeffect understanding. Journal of fish biology, 77(8), pp.1745-1779.
26. Prichard, C.G., Craig, J.M., Roseman, E.F., Fischer, J.L., Manny, B.A. and Kennedy, G.W.,
2017. Egg deposition by lithophilic-spawning fishes in the Detroit and Saint Clair Rivers, 200514 (No.
2017- 5003). US Geological Survey.
27. Podrabsky, J.E. and Somero, G.N., 2004. Changes in gene expression associated with acclimation to
constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus
limnaeus. Journal of Experimental Biology, 207(13), pp.2237-2254.
28. Reutter, J.M. and Herdendorf, C.E., 1976. Thermal discharge from a nuclear power plant:
predicted effects on Lake Erie fish. The Ohio Journal of Science, 76(1), pp.39-45.
29. Rombough, P. J. (1997). The effects of temperature on embryonic and larval development. Global
Warming: Implication of Fresh Water and Marine Fish.
Science Reviews - Biology, 2024, 3(4), 24-30 L.M.Whitehouse
3
30. Sales, C.F., Lemos, F.S., Morais, R.D., Thomé, R.G., Santos, H.B., Pinheiro, A.P., Bazzoli, N. and
Rizzo, E., 2019. Thermal stress induces heat shock protein 70 and apoptosis during embryo
development in a Neotropical freshwater fish. Reproduction, Fertility and Development, 31(3),
pp.547-556.
31. Schnurr, M.E., Yin, Y. and Scott, G.R., 2014. Temperature during embryonic development has
persistent effects on metabolic enzymes in the muscle of zebrafish. Journal of Experimental
Biology, 217(8), pp.1370-1380.
32. Stefanovic, D.I., Manzon, L.A., McDougall, C.S., Boreham, D.R., Somers, C.M., Wilson, J.Y. and
Manzon, R.G., 2016. Thermal stress and the heat shock response in embryonic and young of the year
juvenile lake whitefish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative
Physiology, 193, pp.1-10.
33. Stuart-Smith, R.D., 2021. Climate change: Large-scale abundance shifts in fishes. Current Biol-
ogy, 31(21), pp.R1445-R1447.
34. Takle, H., Baeverfjord, G., Lunde, M., Kolstad, K. and Andersen, Ø., 2005. The effect of heat and
cold exposure on HSP70 expression and development of deformities during embryogenesis of Atlan-
tic salmon (Salmo salar). Aquaculture, 249(1-4), pp.515-524.
35. Tian, S., Zhou, K., Liao, Y., Tang, Y., Liu, Q., Zhang, R., Shou, L. and Zeng, J., 2022. Effects of
temperature shock on the survival of different life stages of large yellow croaker (Larimichthys crocea)
by simulated power plant cooling water. Frontiers in Marine Science, 9, p.1037137.
36. Viader-Guerrero M., Laura T., Guzmán-Villanueva, Spanopoulos-Zarco M., Estrada-Godínez J.
A., Maldonado-García D., Gracia-López V., Omont A., Maldonado-García M., (2021). Effects of tem-
perature on hatching rate and early larval development of longfin yellowtail Seriola rivoliana. Aqua-
culture Reports, 21, 100843 DOI: 10.1016/j.aqrep.2021.100843.
37. van de Pol, I. L. E., Hermaniuk, A., & Verberk, W. C. E. P. (2021). Interacting effects of cell size
and temperature on gene expression, growth, development and swimming performance in larval
zebrafish. Frontiers in Physiology, 12, 738804.
38. Wang, L.H. and Tsai, C.L., 2000. Effects of temperature on the deformity and sex differentiation
of tilapia, Oreochromis mossambicus. Journal of Experimental Zoology, 286(5), pp.534-537.
39. Werner, I., Koger, C.S., Hamm, J.T. and Hinton, D.E., 2001. Ontogeny of the heat shock protein,
hsp70 and hsp60, response and developmental effects of heat shock in the teleost, medaka (Oryzias
latipes). Environ Sci, 8(1), pp.13-29.
40. Werner, I., Linares-Casenave, J., Van Eenennaam, J.P. and Doroshov, S.I., 2007. The effect of tem-
perature stress on development and heat-shock protein expression in larval green sturgeon
(Acipenser mirostris). Environmental Biology of Fishes, 79, pp.191-200.
41. Whitehouse, L.M., McDougall, C.S., Stefanovic, D.I., Boreham, D.R., Somers, C.M., Wilson, J.Y.
and Manzon, R.G., 2017. Development of the embryonic heat shock response and the impact of re-
peated thermal stress in early stage lake whitefish (Coregonus clupeaformis) embryos. Journal of Ther-
mal Biology, 69, pp.294-301.
42. Wieser, W. and Forstner, H., 1986. Effects of temperature and size on the routine rate of oxygen
consumption and on the relative scope for activity in larval cyprinids. Journal of Comparative Physiol-
ogy B, 156, pp.791-796.
43. Yohannan, T.M., 1998. Pelagic Fish. Kadalekum Kanivukal (Bounties of the Sea), pp.21-22