Science Reviews - Biology, 2024, 3(3), 22-39 Muhammad Kashif Zahoor et al.
1
Genome Editing in Insects: CRISPR Technology and
its Prospects
Muhammad Kashif Zahoor*, PhD, Aftab Ahmad
1
, PhD and Muhammad Zulhuss-
nain
2
, PhD
*
Dr. Muhammad Kashif Zahoor (Corresponding Author)
Department of Zoology, Government College University Faisalabad, Pakistan; kashif.zahoor@gcuf.edu.pk
https://orcid.org/0000-0003-0309-9758
1
Dr. Aftab Ahmad
Department of Biochemistry/US-Pakistan Center for Advance Studies in Agriculture and Food Security (USPCAS-AFS), University
of Agriculture Faisalabad, Pakistan
https://orcid.org/0000-0002-2792-9771
2
Dr. Muhammad Zulhussnain
Department of Zoology, Government College University Faisalabad, Pakistan
https://orcid.org/0009-0009-3107-118X
References
1. Ahmad, A., Ghouri, M. Z., Jamil, A., Khan, S. H., Ahmad, N., & Rahman, M. U. (2021). First-
generation transgenic cotton crops. In Cotton Precision Breeding (pp. 229-255). Cham: Springer
International Publishing.
2. Ahmad, A., Javed, M. R., Rao, A. Q., Khan, M. A., Ahad, A., Din, S. U., ... & Husnain, T. (2015).
In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against
Lepidopteran targets using molecular docking. Frontiers in plant science, 6, 1081.
3. Amezian, D., Nauen, R., & Van Leeuwen, T. (2024). The role of ABC transporters in arthropod pesticide
toxicity and resistance. Current Opinion in Insect Science, 101200.
4. Aryan, A., Anderson, M. A., Myles, K. M., & Adelman, Z. N. (2013). TALEN-based gene
disruption in the dengue vector Aedes aegypti. PLoS One, 8(3), e60082.
5. Awata, H., Watanabe, T., Hamanaka, Y., Mito, T., Noji, S., & Mizunami, M. (2015). Knockout crickets
for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive
reinforcement in crickets. Scientific reports, 5(1), 15885.
6. Bai, Y., He, Y., Shen, C. Z., Li, K., Li, D. L., & He, Z. Q. (2023). CRISPR/Cas9-Mediated genomic
knock out of tyrosine hydroxylase and yellow genes in cricket Gryllus bimaculatus. Plos one, 18(4),
e0284124.
7. Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants
in mangrove ecosystems: a review. Environment international, 48, 84-101.
8. Bi, H. L., Xu, J., Tan, A. J., & Huang, Y. P. (2016). CRISPR/Cas9mediated targeted gene
mutagenesis in Spodoptera litura. Insect Science, 23(3), 469-477.
9. Bier, E. (2022). Gene drives gaining speed. Nature Reviews Genetics, 23(1), 5-22.
10. Bonner M R, Alavanja M C R. 2017. Pesticides, human health, and food security. Food and Energy
Security, 6, 8993.
11. Bulle, M., Sheri, V., Aileni, M., & Zhang, B. (2023). Chloroplast Genome Engineering: A Plausible
Approach to Combat Chili Thrips and Other Agronomic Insect Pests of Crops. Plants, 12(19), 3448.
Muhammad Kashif Zahoor et al. Science Reviews - Biology, 2024, 3(3), 22-39
2
12. Bunnak et al. Life-Cycle and Cost of Goods Assessment of Fed-Batch and Perfusion-Based
Manufacturing Processes for mAbs. (2016) Biotechnology Progress. 32, (5).
13. Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural
populations. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1518), 921-928.
14. Cannon, P. M., & Kiem, H. P. (2021). The genome-editing decade. Molecular Therapy, 29(11),
3093-3094.
15. Champer J, Buchman A, Akbari OS (2016) Cheating evolution: engineering gene drives to manip-
ulate the fate of wild populations. Nature Reviews Genetics 17: 146-159
16. Chandel, R. S., Chandla, V. K., Verma, K. S., & Pathania, M. (2022). Insect pests of potato in India:
biology and management. In Insect pests of potato (pp. 371-400). Academic Press.
17. Cheema, H. M. N., Khan, A. A., Khan, M. A., Pervez, M. A., Ghouri, M. Z., Ahmad, A., & Khan,
S. H. (2022). Breeding Cotton for Insect/Pests Resistance. In Cotton Breeding and Biotechnology (pp.
199-232). CRC Press.
18. Chen Lei, C. L., Wang Gui, W. G., Zhu YaNan, Z. Y., Xiang Hui, X. H., & Wang Wen, W. W.
(2016). Advances and perspectives in the application of CRISPR/Cas9 in insects.
19. Chen, J., Du, X., Xu, X., Zhang, S., Yao, L., He, X., & Wang, Y. (2023). Comparative proteomic analysis
provides new insights into the molecular basis of thermal-induced parthenogenesis in silkworm
(Bombyx mori). Insects, 14(2), 134.
20. Chen, X., & Palli, S. R. (2024). Genome editing in pests: basic science to applications. Journal of
Pest Science, 1-18.
21. Denecke, S., Fusetto, R., & Batterham, P. (2017). Describing the role of Drosophila melanogaster
ABC transporters in insecticide biology using CRISPR-Cas9 knockouts. Insect biochemistry and molec-
ular biology, 91, 1-9.
22. Deredec A, Burt A, Godfray HCJ (2008) The population genetics of using homing endonuclease
genes in vector and pest management. Genetics 179 (4): 2013-2026.
23. Devos, Y., Mumford, J. D., Bonsall, M. B., Camargo, A. M., Firbank, L. G., Glandorf, D. C., ... &
Wimmer, E. A. (2022a). Potential use of gene drive modified insects against disease vectors, agricultural
pests and invasive species poses new challenges for risk assessment. Critical Reviews in
Biotechnology, 42(2), 254-27.
24. Devos, Y., Mumford, J. D., Bonsall, M. B., Glandorf, D. C., & Quemada, H. D. (2022). Risk man-
agement recommendations for environmental releases of gene drive modified insects. Biotechnology
Advances, 54, 107807
25. Dong, Y., Yang, Y., Wang, Z., Wu, M., Fu, J., Guo, J., ... & Zhang, J. (2020). Inaccessibility to double
stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest management
science, 76(9), 3168-3176.
26. Douris, V., Denecke, S., Van Leeuwen, T., Bass, C., Nauen, R., & Vontas, J. (2020). Using
CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance:
Drosophila and beyond. Pesticide biochemistry and physiology, 167, 104595.
27. Douris, V., Denecke, S., Van Leeuwen, T., Bass, C., Nauen, R., & Vontas, J. (2020). Using
CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosoph-
ila and beyond. Pesticide biochemistry and physiology, 167, 104595.
28. Douris, V., Papapostolou, K. M., Ilias, A., Roditakis, E., Kounadi, S., Riga, M., ... & Vontas, J.
(2017). Investigation of the contribution of RyR target-site mutations in diamide resistance by
CRISPR/Cas9 genome modification in Drosophila. Insect biochemistry and molecular biology, 87, 127-
135.
Science Reviews - Biology, 2024, 3(3), 22-39 Muhammad Kashif Zahoor et al.
3
29. Dudognon, B., Romero-Santacreu, L., Gómez-Sebastián, S., Hidalgo, A. B., López-Vidal, J., Bellido,
M. L., ... & Escribano, J. M. (2014). Production of functional active human growth factors in insects
used as living biofactories. Journal of Biotechnology, 184, 229-239.
30. Famakinde, D. O. (2020). Public health concerns over gene-drive mosquitoes: will future use of
gene-drive snails for schistosomiasis control gain increased level of community acceptance?
Pathogens and global health, 114(2), 55-63.
31. Fan, X. B., Mo, B. T., Li, G. C., Huang, L. Q., Guo, H., Gong, X. L., & Wang, C. Z. (2022).
Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop
pest moth Helicoverpa armigera. BMC biology, 20(1), 214.
32. Fandino, R. A., Haverkamp, A., Bisch-Knaden, S., Zhang, J., Bucks, S., Nguyen, T. A. T., ... &
Große-Wilde, E. (2019). Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not
oviposition behaviors in the hawkmoth Manduca sexta. Proceedings of the National Academy of
Sciences, 116(31), 15677-15685.
33. Fasulo, B., Meccariello, A., Morgan, M., Borufka, C., Papathanos, P. A., & Windbichler, N. (2020).
A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet-
ics, 16(3), e1008647.
34. Fotakis, E. A., Mastrantonio, V., Grigoraki, L., Porretta, D., Puggioli, A., Chaskopoulou, A., ... &
Vontas, J. (2020). Identification and detection of a novel point mutation in the Chitin Synthase gene
of Culex pipiens associated with diflubenzuron resistance. PLoS neglected tropical diseases, 14(5),
e0008284.
35. Galizi, R., Hammond, A., Kyrou, K., Taxiarchi, C., Bernardini, F., O’Loughlin, S. M., ... & Crisanti,
A. (2016). A CRISPR-Cas9 sex-ratio distortion system for genetic control. Scientific reports, 6(1), 31139.
36. Gantz, V. M., & Bier, E. (2015). The mutagenic chain reaction: a method for converting heterozy-
gous to homozygous mutations. Science, 348(6233), 442-444.
37. Gouda, M. R., Jeevan, H., & Shashank, H. G. (2024). CRISPR/Cas9: a cutting-edge solution for
combatting the fall armyworm, Spodoptera frugiperda. Molecular Biology Reports, 51(1), 13.
38. Gratz, S. J., Cummings, A. M., Nguyen, J. N., Hamm, D. C., Donohue, L. K., Harrison, M. M., ... &
O’Connor-Giles, K. M. (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9
nuclease. Genetics, 194(4), 1029-1035.
39. Gratz, S., O'Connor-Giles, K. M., & Wildonger, J. (2024). Introduction to CRISPR and its use in
Drosophila. Cold Spring Harbor Protocols, 2024(5), pdb-top108228.
40. Guo, C., Ma, X., Gao, F., & Guo, Y. (2023). Off-target effects in CRISPR/Cas9 gene editing. Frontiers
in bioengineering and biotechnology, 11, 1143157.
41. Hall, A. B., Basu, S., Jiang, X., Qi, Y., Timoshevskiy, V. A., Biedler, J. K., ... & Tu, Z. (2015). A male-
determining factor in the mosquito Aedes aegypti. Science, 348(6240), 1268-1270.
42. Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., ... & Nolan, T. (2016).
A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector
Anopheles gambiae. Nature biotechnology, 34(1), 78-83.
43. Harvey-Samuel, T., Feng, X., Okamoto, E. M., Purusothaman, D. K., Leftwich, P. T., Alphey, L., &
Gantz, V. M. (2023). CRISPR-based gene drives generate super-Mendelian inheritance in the disease
vector Culex quinquefasciatus. Nature Communications, 14(1), 7561.
44. Hillary, V. E., Ceasar, S. A., & Ignacimuthu, S. (2020). Genome engineering in insects: focus on the
CRISPR/Cas9 system. In Genome engineering via CRISPR-Cas9 system (pp. 219-249). Academic Press.
45. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for
genome engineering. Cell, 157(6), 1262-1278.
Muhammad Kashif Zahoor et al. Science Reviews - Biology, 2024, 3(3), 22-39
4
46. Hussain, M. I., Raziq, A., Ahmed, A., Iqbal, M. W., Tian, R., Li, J., ... & Liu, Y. (2023). Recent pro-
gress in CRISPR-based bioengineering of microbial cell factories for important nutraceuticals synthe-
sis. Journal of Applied Microbiology, 134(6), lxad114.
47. Itokawa, K., Komagata, O., Kasai, S., Ogawa, K., & Tomita, T. (2016). Testing the causality between
CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Scientific re-
ports, 6(1), 24652.
48. Jinek M, Chylinski K, Fonfara I, Haur M, Doudna JA, Carpentier EA (2012) Programmable dual-
RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821
49. Jurat-Fuentes J L, Heckel D G, Ferre J. 2021. Mechanisms of resistance to insecticidal proteins from
Bacillus thuringiensis. Annual Review of Entomology, 66, 121140.
50. Katsuma, S., Daimon, T., Mita, K., & Shimada, T. (2006). Lepidopteran ortholog of Drosophila
breathless is a receptor for the baculovirus fibroblast growth factor. Journal of virology, 80(11), 5474-
5481.
51. Khan, A. H., Tye, G. J., & Noordin, R. (2020). CRISPR-Cas9 genome editing tool for the production
of industrial biopharmaceuticals. Molecular biotechnology, 62, 401-411.
52. Kistler, K. E., Vosshall, L. B., & Matthews, B. J. (2015). Genome engineering with CRISPR-Cas9 in
the mosquito Aedes aegypti. Cell reports, 11(1), 51-60.
53. Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. Sci-
ence, 361(6405), 866-869.
54. Kohno, H., & Kubo, T. (2019). Genetics in the honey bee: Achievements and prospects toward the
functional analysis of molecular and neural mechanisms underlying social behaviors. Insects, 10(10),
348.
55. Koutroumpa, F., Monsempès, C., Anton, S., François, M. C., Montagné, N., & Jacquin-Joly, E.
(2022). Pheromone receptor knock-out affects pheromone detection and brain structure in a moth. Bi-
omolecules, 12(3), 341.
56. Lee, G. Y., Jung, W. W., Kang, C. S., & Bang, I. S. (2006). Expression and characterization of human
vascular endothelial growth factor (VEGF165) in insect cells. Protein expression and purification, 46(2),
503-509.
57. Lee, H. K., Lim, H. M., Park, S. H., & Nam, M. J. (2021). Knockout of hepatocyte growth factor by
CRISPR/Cas9 system induces apoptosis in hepatocellular carcinoma cells. Journal of Personalized Med-
icine, 11(10), 983.
58. Li, F., & Scott, M. J. (2016). CRISPR/Cas9-mediated mutagenesis of the white and Sex lethal loci
in the invasive pest, Drosophila suzukii. Biochemical and biophysical research communications, 469(4),
911-916.
59. Li, F., Zhao, X., Li, M., He, K., Huang, C., Zhou, Y., ... & Walters, J. R. (2019). Insect genomes:
progress and challenges. Insect molecular biology, 28(6), 739-758.
60. Li, S., Kim, D. S., & Zhang, J. (2023). Plastidmediated RNA interference: A potential strategy for
efficient pest control. Plant, Cell & Environment, 46(9), 2595-2605.
61. Liu, Q., Liu, W., Zeng, B., Wang, G., Hao, D., & Huang, Y. (2017). Deletion of the Bombyx mori
odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. Insect Biochemistry
and Molecular Biology, 86, 58-67.
62. Ma, S., Liu, Y., Liu, Y., Chang, J., Zhang, T., Wang, X., ... & Xia, Q. (2017). An integrated CRISPR
Bombyx mori genome editing system with improved efficiency and expanded target sites. Insect bio-
chemistry and molecular biology, 83, 13-20
Science Reviews - Biology, 2024, 3(3), 22-39 Muhammad Kashif Zahoor et al.
5
63. Martin, A., Wolcott, N. S., & O'Connell, L. A. (2020). Bringing immersive science to undergraduate
laboratory courses using CRISPR gene knockouts in frogs and butterflies. Journal of Experimental Biol-
ogy, 223(Suppl_1), jeb208793.
64. Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., & Bellosta, P. (2019). Drosoph-
ila melanogaster: A model organism to study cancer. Frontiers in genetics, 10, 51.
65. Naidoo, K., & Oliver, S. V. (2024). Gene drives: an alternative approach to malaria control?. Gene
Therapy, 1-13.
66. Nakamura, T., Ylla, G., & Extavour, C. G. (2022). Genomics and genome editing techniques of
crickets, an emerging model insect for biology and food science. Current Opinion in Insect Science, 50,
100881.
67. Nolan, T. (2021). Control of malaria-transmitting mosquitoes using gene drives. Philosophical
Transactions of the Royal Society B, 376(1818), 20190803.
68. North, A. R., Burt, A., & Godfray, H. C. J. (2020). Modelling the suppression of a malaria vector
using a CRISPR-Cas9 gene drive to reduce female fertility. BMC biology, 18, 1-14.
69. Oriel, C., & Lasko, P. (2018). Recent developments in using Drosophila as a model for human
genetic disease. International journal of molecular sciences, 19(7), 2041.
70. Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T et al (2014) Regulating gene
drives. Science 345 (6197): 626-628.
71. Qian, W. Q., & Wan, F. H. (2018). China launches the “IAS1000 Project”. Journal of integrative agri-
culture, 17(12), 2840.
72. Raban, R. R., & Akbari, O. S. (2022). An introduction to the molecular genetics of gene drives and
thoughts on their gradual transition to field use. In Transgenic Insects: Techniques and Applications (pp.
1-21). GB: CABI.
73. Raban, R. R., Marshall, J. M., & Akbari, O. S. (2020). Progress towards engineering gene drives for
population control. Journal of Experimental Biology, 223(Suppl_1), jeb208181.
74. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE et al (2013) Double nicking
by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154 (6): 1380-1389
75. Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal A S, Srivastav A L, Kaushal J. 2021. An
extensive review on the consequences of chemical pesticides on human health and environment. Jour-
nal of Cleaner Production, 283, 124657.
76. Ranian, K., Zahoor, M. K., Zulhussnain, M., & Ahmad, A. (2022). CRISPR/Cas9 mediated sex-
ratio distortion by sex specific gene editing in Aedes aegypti. Saudi Journal of Biological Sciences, 29(4),
3015-3022.
77. Reegan, A. D., Ceasar, S. A., Paulraj, M. G., Ignacimuthu, S., & Al-Dhabi, N. A. (2016). Current
status of genome editing in vector mosquitoes: a review. Bioscience trends, 10(6), 424-432.
78. Reid, W., & O’Brochta, D. A. (2016). Applications of genome editing in insects. Current opinion in
insect science, 13, 43-54.
79. Rosli, M. A. F., Jaafar, S. N. S., Azizan, K. A., Yaakop, S., & Aizat, W. M. (2024). Omics approaches
to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodi-
dae). PeerJ, 12, e17843.
80. Salsman, J., & Dellaire, G. (2017). Precision genome editing in the CRISPR era. Biochemistry and cell
biology, 95(2), 187-201.
81. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting ge-
nomes. Nature biotechnology, 32(4), 347-355.
Muhammad Kashif Zahoor et al. Science Reviews - Biology, 2024, 3(3), 22-39
6
82. Scott MJ, Pimsler ML, Tarone AM (2014) Sex determination mechanisms in the Calliphoridae
(blow flies). Sexual Development 8 (1-3): 29-37.
83. Shen, S., Loh, T. J., Shen, H., Zheng, X., & Shen, H. (2017). CRISPR as a strong gene editing
tool. BMB reports, 50(1), 20.
84. Shukla JN, Palli SR (2013) Tribolium castaneum Transformer-2 regulates sex determination and
development in both males and females. Insect biochemistry and molecular biology 43 (12): 1125-
1132.
85. Siddall, A., Harvey-Samuel, T., Chapman, T., & Leftwich, P. T. (2022). Manipulating insect sex
determination pathways for genetic pest management: opportunities and challenges. Frontiers in Bi-
oengineering and Biotechnology, 10, 867851.
86. Sinkins, S. P., & Gould, F. (2006). Gene drive systems for insect disease vectors. Nature Reviews
Genetics, 7(6), 427-435.
87. Smidler AL, Terenzi O, Soichot J, Levashina EA, Marois E (2013) Targeted mutagenesis in the
malaria mosquito using TALE nucleases. PloS one 8 (8): 74511
88. Somers, J., Nguyen, J., Lumb, C., Batterham, P., & Perry, T. (2015). In vivo functional analysis of
the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad. In-
sect biochemistry and molecular biology, 64, 116-127.
89. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR--a widespread system that provides acquired
resistance against phages in bacteria and archaea. Natural Reviews Microbiology 6: 181186
90. Sun, H., Bu, L. A., Su, S. C., Guo, D., Gao, C. F., & Wu, S. F. (2023). Knockout of the odorant
receptor co-receptor, orco, impairs feeding, mating and egg-laying behavior in the fall armyworm
Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 152, 103889.
91. Sustar, A. E., Strand, L. G., Zimmerman, S. G., & Berg, C. A. (2023). Imaginal disk growth factors
are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genet-
ics, 223(2), iyac185.
92. Taning, C. N. T., Van Eynde, B., Yu, N., Ma, S., & Smagghe, G. (2017). CRISPR/Cas9 in insects:
Applications, best practices and biosafety concerns. Journal of insect physiology, 98, 245-257.
93. Testa, G., Mainardi, M., Vannini, E., Pancrazi, L., Cattaneo, A., & Costa, M. (2022). Disentangling
the signaling complexity of nerve growth factor receptors by CRISPR/Cas9. The FASEB Jour-
nal, 36(11), 1-16.
94. Tong, X. L., Fang, C. Y., Gai, T. T., Shi, J., Lu, C., & Dai, F. Y. (2018). Applications of the
CRISPR/Cas9 system in insects. Yi Chuan= Hereditas, 40(4), 266-278.
95. Tsoumani, K. T., Meccariello, A., Mathiopoulos, K. D., & Papathanos, P. A. (2020). Developing
CRISPRbased sexratio distorters for the genetic control of fruit fly pests: A how to manual. Archives
of insect biochemistry and physiology, 103(3), e21652.
96. Ugur, B., Chen, K., & Bellen, H. J. (2016). Drosophila tools and assays for the study of human
diseases. Disease models & mechanisms, 9(3), 235-244.
97. Velnar, T., & Gradisnik, L. (2018). Tissue augmentation in wound healing: the role of endothelial
and epithelial cells. Medical Archives, 72(6), 444.
98. Verheyen, E. M. (2022). The power of Drosophila in modeling human disease mechanisms. Disease
Models & Mechanisms, 15(3), dmm049549.
99. Wang JY & Doudna JA. 2023. CRISPR technology: A decade of genome editing is only the begin-
ning. Science, 379(6629): eadd8643
Science Reviews - Biology, 2024, 3(3), 22-39 Muhammad Kashif Zahoor et al.
7
100. Wang Y, Huang C, Zhao W. 2022. Recent advances of the biological and biomedical applications
of CRISPR/Cas systems. Mol Biol Rep, 49(7): 7087-7100
101. Wang, G. H., Du, J., Chu, C. Y., Madhav, M., Hughes, G. L., & Champer, J. (2022a). Symbionts
and gene drive: two strategies to combat vector-borne disease. Trends in Genetics, 38(7), 708-723.
102. Wang, X., Cao, X., Jiang, D., Yang, Y., & Wu, Y. (2020). CRISPR/Cas9 mediated ryanodine recep-
tor I4790M knockin confers unequal resistance to diamides in Plutella xylostella. Insect Biochemistry and
Molecular Biology, 125, 103453.
103. Wang, Y., Li, Z., Xu, J., Zeng, B., Ling, L., You, L., ... & Tan, A. (2013). The CRISPR/Cas system
mediates efficient genome engineering in Bombyx mori. Cell research, 23(12), 1414-1416.
104. Watanabe, T., Noji, S., & Mito, T. (2016). GeneKnockout by Targeted Mutagenesis in a Hemi-
metabolous Insect, the Two-Spotted Cricket Gryllus bimaculatus, using TALENs. TALENs: Methods and
Protocols, 143-155.
105. Watanabe, T., Noji, S., & Mito, T. (2017). Genome editing in the cricket, Gryllus bimaculatus. Ge-
nome editing in animals: methods and protocols, 219-233.
106. Watanabe, T., Ochiai, H., Sakuma, T., Horch, H. W., Hamaguchi, N., Nakamura, T., ... & Mito, T.
(2012). Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL
effector nucleases. Nature communications, 3(1), 1017.
107. Wiedenheft, B., Sternberg, S. H., & Doudna, J. A. (2012). RNA-guided genetic silencing systems
in bacteria and archaea. Nature, 482(7385), 331-338.
108. Williams, A. E., Franz, A. W., Reid, W. R., & Olson, K. E. (2020). Antiviral effectors and gene
drive strategies for mosquito population suppression or replacement to mitigate arbovirus transmis-
sion by Aedes aegypti. Insects, 11(1), 52.
109. Wu, M., Dong, Y., Zhang, Q., Li, S., Chang, L., Loiacono, F. V., ... & Bock, R. (2022). Efficient
control of western flower thrips by plastid-mediated RNA interference. Proceedings of the National
Academy of Sciences, 119(15), e2120081119.
110. Xu, L., Jiang, H. B., Yu, J. L., & Wang, J. J. (2024). Plasticity of the olfactory behaviors in Bactrocera
dorsalis under various physiological states and environmental conditions. Current Opinion in Insect
Science, 101196.
111. Yamaguchi, M. (Ed.). (2018). Drosophila models for human diseases (Vol. 1076). Springer.
112. Ying, Y. A. N., Aumann, R. A., Häcker, I., & Schetelig, M. F. (2023). CRISPR-based genetic control
strategies for insect pests. Journal of Integrative Agriculture, 22(3), 651-668.
113. Zahoor, M. K., Ahmad, A., Zahoor, M. A., Majeed, H. N., Zulhussnain, M., & Ranian, K. (2021).
CRISPR/Cas-based insect resistance in crops. CRISPR Crops: The Future of Food Security, 117-149.
Springer Pub. Comp.
114. Zahoor, M. K., Poidevin, M., Lecerf, C., Garrido, D., & Montagne, J. (2019). A Drosophila genetic
screen for suppressors of S6kinase-dependent growth identifies the F-box subunit Archipel-
ago/FBXW7. Molecular Genetics and Genomics, 294, 573-582.
115. Zahoor, M. K., Rasul, A., Zahoor, M. A., Sarfraz, I., Zulhussnain, M., Rasool, R., ... & Ranian, K.
(2019). Dengue fever: a general perspective. Dengue fever: a resilient threat in the face of innovation, 1. In
Tech Open Science, ISBN: 978-953-51-6583-5.
116. Zhang, J. H., Adikaram, P., Pandey, M., Genis, A., & Simonds, W. F. (2016). Optimization of
genome editing through CRISPR-Cas9 engineering. Bioengineered, 7(3), 166-174.
Muhammad Kashif Zahoor et al. Science Reviews - Biology, 2024, 3(3), 22-39
8
117. Zhang, Y., Zhao, B., Roy, S., Saha, T. T., Kokoza, V. A., Li, M., & Raikhel, A. S. (2016). microRNA-
309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes ae-
gypti. Proceedings of the National Academy of Sciences, 113(33), E4828-E4836.
118. Zhang, Z., Aslam, A. F., Liu, X., Li, M., Huang, Y., & Tan, A. (2015). Functional analysis of
Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system. Journal of insect physiology, 79,
73-79.
119. Zimmer, C. T., Garrood, W. T., Puinean, A. M., Eckel-Zimmer, M., Williamson, M. S., Davies, T.
E., & Bass, C. (2016). A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic
acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster. Insect biochemistry
and molecular biology, 73, 62-69.
120. Zulhussnain, M., Zahoor, M. K., Ranian, K., Ahmad, A., & Jabeen, F. (2023). CRISPR Cas9 medi-
ated knockout of sex determination pathway genes in Aedes aegypti. Bulletin of Entomological Re-
search, 113(2), 243-252.
121. Zuo, Y., Wang, H., Xu, Y., Huang, J., Wu, S., Wu, Y., & Yang, Y. (2017). CRISPR/Cas9 mediated
G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance
to diamide insecticides. Insect biochemistry and molecular biology, 89, 79-85.