Science Reviews - Biology, 2024, 3(3), 22-39 Muhammad Kashif Zahoor et al.
3
29. Dudognon, B., Romero-Santacreu, L., Gómez-Sebastián, S., Hidalgo, A. B., López-Vidal, J., Bellido,
M. L., ... & Escribano, J. M. (2014). Production of functional active human growth factors in insects
used as living biofactories. Journal of Biotechnology, 184, 229-239.
30. Famakinde, D. O. (2020). Public health concerns over gene-drive mosquitoes: will future use of
gene-drive snails for schistosomiasis control gain increased level of community acceptance?
Pathogens and global health, 114(2), 55-63.
31. Fan, X. B., Mo, B. T., Li, G. C., Huang, L. Q., Guo, H., Gong, X. L., & Wang, C. Z. (2022).
Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop
pest moth Helicoverpa armigera. BMC biology, 20(1), 214.
32. Fandino, R. A., Haverkamp, A., Bisch-Knaden, S., Zhang, J., Bucks, S., Nguyen, T. A. T., ... &
Große-Wilde, E. (2019). Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not
oviposition behaviors in the hawkmoth Manduca sexta. Proceedings of the National Academy of
Sciences, 116(31), 15677-15685.
33. Fasulo, B., Meccariello, A., Morgan, M., Borufka, C., Papathanos, P. A., & Windbichler, N. (2020).
A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet-
ics, 16(3), e1008647.
34. Fotakis, E. A., Mastrantonio, V., Grigoraki, L., Porretta, D., Puggioli, A., Chaskopoulou, A., ... &
Vontas, J. (2020). Identification and detection of a novel point mutation in the Chitin Synthase gene
of Culex pipiens associated with diflubenzuron resistance. PLoS neglected tropical diseases, 14(5),
e0008284.
35. Galizi, R., Hammond, A., Kyrou, K., Taxiarchi, C., Bernardini, F., O’Loughlin, S. M., ... & Crisanti,
A. (2016). A CRISPR-Cas9 sex-ratio distortion system for genetic control. Scientific reports, 6(1), 31139.
36. Gantz, V. M., & Bier, E. (2015). The mutagenic chain reaction: a method for converting heterozy-
gous to homozygous mutations. Science, 348(6233), 442-444.
37. Gouda, M. R., Jeevan, H., & Shashank, H. G. (2024). CRISPR/Cas9: a cutting-edge solution for
combatting the fall armyworm, Spodoptera frugiperda. Molecular Biology Reports, 51(1), 13.
38. Gratz, S. J., Cummings, A. M., Nguyen, J. N., Hamm, D. C., Donohue, L. K., Harrison, M. M., ... &
O’Connor-Giles, K. M. (2013). Genome engineering of Drosophila with the CRISPR RNA-guided Cas9
nuclease. Genetics, 194(4), 1029-1035.
39. Gratz, S., O'Connor-Giles, K. M., & Wildonger, J. (2024). Introduction to CRISPR and its use in
Drosophila. Cold Spring Harbor Protocols, 2024(5), pdb-top108228.
40. Guo, C., Ma, X., Gao, F., & Guo, Y. (2023). Off-target effects in CRISPR/Cas9 gene editing. Frontiers
in bioengineering and biotechnology, 11, 1143157.
41. Hall, A. B., Basu, S., Jiang, X., Qi, Y., Timoshevskiy, V. A., Biedler, J. K., ... & Tu, Z. (2015). A male-
determining factor in the mosquito Aedes aegypti. Science, 348(6240), 1268-1270.
42. Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., ... & Nolan, T. (2016).
A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector
Anopheles gambiae. Nature biotechnology, 34(1), 78-83.
43. Harvey-Samuel, T., Feng, X., Okamoto, E. M., Purusothaman, D. K., Leftwich, P. T., Alphey, L., &
Gantz, V. M. (2023). CRISPR-based gene drives generate super-Mendelian inheritance in the disease
vector Culex quinquefasciatus. Nature Communications, 14(1), 7561.
44. Hillary, V. E., Ceasar, S. A., & Ignacimuthu, S. (2020). Genome engineering in insects: focus on the
CRISPR/Cas9 system. In Genome engineering via CRISPR-Cas9 system (pp. 219-249). Academic Press.
45. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for
genome engineering. Cell, 157(6), 1262-1278.