Science Reviews - Biology, 2024, 3(4), 7-23 Prasanta Chakraborty
5
73. H. Zhang, S. Hedhili, G. Montiel, et al., The basic helix-loop-helix transcription factor CrMYC2
controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis
in Catharanthus roseus, Plant J. 67 (2011) 61-71.
74. L. van der Fits, J. Memelink, The jasmonate-inducible AP2/ERF- domain transcription factor
ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element,
Plant J. 25 (2001) 43-53.
75. P. Paul, S.K. Singh, B. Patra, et al., Mutually regulated AP2/ERF gene clusters modulate biosyn-
thesis of specialized metabolites in plants, Plant Physiol. 182 (2020) 840-856.
76. T. Shoji, L. Yuan, ERF gene clusters : working together to regulate metabolism, Trends Plant Sci.,
26 (2021) 23-32.
77. D.H. Liu, W.W. Ren, L.J. Cui, et al., Enhanced accumulation of catharanthine and vindoline in
Catharanthus roseus hairy roots by overexpression of transcriptional factor ORCA2, African J Biotech.
10 (2011) 3260-3268.
78. J. Memelink, P. Gantet, Transcription factors involved in terpenoid indole alkaloid biosynthesis
in Catharanthus roseus, Phytochem Rev. 6 (2007) 353-362.
79. T. Han, G. Miao, Strategies, achievements, and potential challenges of plant and microbial chassis
in the biosynthesis of plant secondary metabolites, MDPI, Molecules, 29 (2024) 2106.
80. T. Sun, L. Xu, H. Sun, et al., VvVHP1;2 is transcriptionally activated by VvMYBA1 and promotes
anthocyanin accumulation of grape berry skins via glucose signal, Front. Plant Sci. 8 (2017) 1811.
81. V. Ferreira, O. Pinto-Carnide, R. Arroyo-Garcia, et al., Berry color variation in grapevine as a
source of diversity, Plant Physiol. Biochem. 132 (2018) 696-707.
82. L. Chen, B. Hu, Y. Qin, et al., Advance of the negative regulation of anthocyanin biosynthesis by
MYB transcription factors, Plant Physiol. Biochem. 136 (2019) 178-187.
83. L. Meng, C. Qi, C. Wang, et al., Determinant factors and regulatory systems for anthocyanin bio-
synthesis in rice apiculi and stigmas, Rice 14 (2021) 37.
84. J. Zheng, H. Wu, H. Zhu, et al., Determining factors, regulation system, and domestication of
anthocyanin biosynthesis in rice leaves, New Phytol. 223 (2019) 705-721.
85. L. Li, B, Zhao, L. Xi-Hong, et al., Differential expression of anthocyanin biosynthetic genes and
transcription factor PcMYB10 in Pears (Pyrus communis L.), PLoS ONE 7 (2012) e 46070.
86. C. Gomez, N. Terrier, I. Torregrosa, et al., Grapevine MATE-type proteins act as vacuolar H+-
dependent acylated anthocyanin transporter, Plant Physiol. 150 (2009) 402-415.
87. R. Perez-Diaz, M. Ryngajllo, j. Perez-Diaz, et al., VvMATE1 and VvMATE2 encode putative pro-
anthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Rep. 33
(2014) 1147=1159
88. J. Li, Y. Qin, C. Zhao, et al., Tetracycline antibiotics : potential anticancer drugs, Eur. J. Pharmacol.
956 (2023) 175949.
89. S. Yin, W. Wang, X. Wang, et al., Identification of a cluster-situated activator of oxytetracycline
biosynthesis and manipulation of its expression for improved oxytetracycline production in Strepto-
myces rimosus, Microb Cell Fact. 14 (2015) 46.
90. J. F. Martin, P. Liras, Engineering of regulatory cascades and networks controlling antibiotic bio-
synthesis in Streptomyces, Curr Opin Microbiol. 13 (2010) 263-273.
91. M.J. Ryan, J.A. Lotvin, N. Strathy, et al., Clone of the biosynthetic pathway for chlorotetracycline
and tetracycline formation and cosmids useful therein, US Patent, 5 (1999) 866,410.