Science Reviews - Biology, 2024, 3(4), 7-23 Prasanta Chakraborty
1
Gene cluster regulators from plants to microbes: Key
role in vesicular targeting, transport of intermediate
compounds and secondary metabolite biosynthesis
Prasanta Chakraborty, PhD
Indian Institute of Chemical Biology, Kolkata, West Bengal, India
Scopus: https://www.scopus.com/authid/detail.uri?authorId=57200536237
References
1. A.M. Takos, C. Knudsen, D. Lai, et al., Genomic clustering of cyanogenic glucoside biosynthetic
genes aids their identification in Lotus japonicas and suggests the repeated evolution of this chemical
defense pathway, Plant J. 68 (2011) 273-286.
2. M. Itkin, U. Heinig, O. Tzfadia, et al. , Biosynthesis of antinutritional alkaloids in solanaceous
crops is mediated by clustered genes, Science 341 (2013) 175-179.
3. P. Chakraborty, Herbal genomics as tools for dissecting new metabolic pathway of unexplored
medicinal plants and drug discovery, Biochimie Open. 6 (2018) 9-16..
4. F. Kellner, J. Kim, B.J. Clavijo, et al., Genome-guided investigation of plant natural product
biosynthesis, Plant J. 82 (2015) 680-692
5. T. Winzer, V. Gazda, Z. He, et al., A Papaver somniferum 10-gene cluster for the synthesis of the
anticancer alkaloid noscapine, Science 336 (2012) 1704-1708.
6. S. Ziemons, K. Koutsantas, U. Kuck, et al., Penicillin production in industrial strain Penicillium
chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes, BMC
Biotechnol. 17 (2017) 16
7. U. Lesnik, A. Gormand, V. Magdevska, et al., Regulatory elements in tetracycline-encoding gene
clusters : the otc gene positively regulates the production of oxytetracycline in Streptomyces rimosus,
Food Technol. Biotechnol. 47 (2009) 323-330.
8. P. Chakraborty, Gene cluster from plant to microbes : their role in genome architecture,
organism’s development, specialized metabolism and drug discovery, Biochimie 193 (2022) 1-15
9. A. Becernl, I. Perez-Victoria, S. Ye, et al., Discovery of cryptic largimycins in Streptomyces reveals
novel biosynthetic avenues enriching the structural diversity of the leinamycin family, ACS Chem.
Biol. 15 (2020) 1541-1553.
10. J.F. Martin, Transport systems, intracellular traffic of intermediates and secretion of β-lactam
antibiotics in fungi, Fungal Biol. & Biotechnol. 7 (2020) 6
11. W.H. Meijer, L. Gidijala, S. Fekken, et al., Peroxisomes are required for efficient penicillin biosyn-
thesis in Penicillium chrysogenum, Appl Environ Microbiol. 76 (2010) 5702-5709.
12. N. Shitan, Secondary metabolites in plants : transport and self-tolerance mechanisms, Biosci.
Biotechnol. & Biochem. 80 (2016) 1283-1293.
13. V. De Luca, V. Salim, A. Thamm , et al., Making iridoids/secoiridoids and monoterpenoid indole
alkaloids : progress on pathway elucidation, Curr. Opin. Plant Biol. 19 (2014) 35-42.
14. P. Verma, A.K. Mathur, A. Srivastava et al. , Emerging trends in research on spatial and
temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus : a literature
update, Protoplasma 249 (2012) 255-268.
Prasanta Chakraborty Science Reviews - Biology, 2024, 3(4), 7-23
2
15. B. Darbani, M.S. Motawia, C.E. Olsen, et al., The biosynthetic gene cluster for the cyanogenic
glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter, Sci. Rep.
6 (2016) 37079.
16. H.W. Nutzmann, A. Huang, A. Osbourn, Plant metabolic clusters-from genetics to genomics,
New Phytol. 211 (2016) 771-789.
17. J.A. Boutanev, J. Zi, D.R. Nelson, et al., Investigation of terpene diversification across multiple
sequenced plant genomes, Proc. Natl. Acad. Sci. USA, 112 (2015) E81-E88.
18. Y. Shang, Y.S. Ma, Y. Zhou, et al., Biosynthesis, regulation, and domestication of bitterness in
cucumber, Science 346 (2014) 1084-1088.
19. S. Boycheva, I. Daviet, J.L. Wolfender et al., The rise of operon-like gene cluster in plants, Trends
Plant Sci. 19 (2014) 447-459.
20. S. Swaminathan, D. Morrone, Q. Wang, et al., CYP76M7 phytoalexin/allelochemical
biosynthesis is an ent-cassadiene C11alpha-hydroxylase defining a second multifunctional
diterpenoid biosynthetic gene cluster in rice, Plant Cell 21 (2009) 3315-3325.
21. B. Diez, S. Gutierrez, J.L. Barredo et al., The cluster of penicillin biosynthetic genes : identification
and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase
and linkage to the pcbC and penDE genes, J.Biol.Chem. 265 (1990) 16358-16365.
22. J.F. Martin, Molecular expression of penicillin biosynthesis genes in fungi: regulatory proteins
interact with a bidirectional promoter region, J Bacteriol. 182 (2000) 2355-2362.
23. L.B. Pickens, Y.Tang, Decoding and engineering tetracycline biosynthesis, Metab Eng. 11 (2009)
69-75.
24. W. Zhang, K. Watanabe, C.C.C. Wang et al., Heterologus biosynthesis of amidated polyketides
with novel cyclization regioselectivity from oxytetracycline polyketide synthase, J Nat Prod. 69 (2006)
1633- 1636.
25. A. Fournier-Level, T. Lacombe, L. Le Cunff et al., Evolution of the VvMybA gene family, the major
determinant of berry colour in cultivated grapevine ( Vitis vinifera L.), Heredity 104 (2010) 351-362.
26. B. Aigle, C. Corre, Waking up Streptomyces secondary metabolism by constitutive expression of
activators or genetic disruption of repressors, Methods Enzymol. 517 (2012) 343-366
27. T.C. McLean, B. Wilkinson, M.I. Hutchings et al., Dissolution of the disparate: co-ordinate regu-
lation in antibiotic biosynthesis, MDPI, antibiotics 8 (2019) 83-100.
28. S.J.W. Busby, Transcription activation in bacteria: Ancient and modern, Microbiology 165 (2019)
386-395.
29. A.A. Brakhage, Regulation of fungal secondary metabolism, Nat Rev Microbiol. 11 (2013) 21-32.
30. R. Makitrynskyy, B. Ostash, O. Tsypik , et al., Pleiotropic regulatory genes bldA, adpA, and absB
are implicated in production of phosphoglycolipid antibiotic moenomycin, Open Biol. 3 (2013)
130121.
31. S. Rigali, F. Titgemeyer, S. Barends, et al., Feast or famine : the global regulator DasR links nutrient
stress to antibiotic production by Streptomyces, EMBO Rep. 9 (2008) 670-675.
32. A.M. Calvo, The VeA regulatory system and its role in morphological and chemical
development in fungi, Fungal Genet Biol. 45 (2008) 1053-1061.
33. J. Zhang, H. Chen, M.W. Sumarah , et al., VeA gene acts as a positive regulator of conidia produc-
tion, ochratoxin A biosynthesis, and oxidative stress tolerance in Aspergillus niger, J. Agric Food Chem.
66 (2018) 13199-13208.
Science Reviews - Biology, 2024, 3(4), 7-23 Prasanta Chakraborty
3
34. J.W. Bok, N.P. Keller, LaeA , a regulator of secondary metabolism in Aspergillus spp., Eukaryot
Cell. 3 (2004) 527-535.
35. K. Kosalkova, C. Garcia-Estrada, R.P. Godio, et al., The global regulator LaeA controls penicillin
biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chryso-
genum, Biochimie 91 (2009) 214-225.0
36. R. Croteau, T.M. Kutchan, N.G. Lewis, et al., Natural products (secondary metabolites) , biochem-
istry & molecular biology of plants, Am. Soc. Plant Physiol. (2000) 1250-1318.
37. N. Shitan, K. Yazaki, Dynamism of vacuoles toward survival strategy in plants, Biochimica et
Biophysica Acta 1862 (2020) 183127
38. M. Wink, The plant vacuole: a multifunctional compartment, J.Exp.Bot. 44 (1993) 231-246.
39. I. Carqueijeiro, H. Noronha, P. Duarte, et al., Vacuolar transport of the medicinal alkaloid from
C.Roseus is mediated by a proton–driven antiport, Plant Physiol. 162 (2013) 1486-1496.
40. B. Deus-Neumann, M.H. Zenk, A highly selective alkaloid uptake system in vacuoles of higher
plants, Planta 162 (1984) 250-260,
41. F. Yu, V. De Luca, ATP-binding cassette transporter controls leaf surface secretion of anticancer
drug components in Catharanthus roseus, Proc. Natl. Acad. Sci. USA 110 (2013) 15830-15835.
42. N.Shitan, F. Dalmas, K. Dan, et al., Characterization of Coptis Japonica CjABCB2, an ATP-binding
cassette protein involved in alkaloid transport, Phytochemistry 91 (2013) 109-116.
43. I.M. Van Der Meer, M.E. Stam, A.J. Van Tunen, et al., Antisense inhibition of flavonoid biosynthe-
sis in petunia anthers results in male sterility, Plant Cell 4 (1992) 253-262.
44. E. Petrussa, E. Braidot, M. Zancani, et al., Plant flavonoids-biosynthesis, transport and involve-
ment in stress responses, Int. J. Mol. Sci. 14 (2013) 14950-14973
45. K. Yazaki, Transporter of secondary metabolites, Curr. Opin. Plant Biol. 8 (2005) 301-307.
46. K. Springob, J. Nakajima, M. Yamazaki, et al., Recent advances in the biosynthesis and accumu-
lation of anthocyanins, Nat. Prod. Rep. 20 (2003) 288-303.
47. S. Conn, C. Franco, W. Zhang, Characterization of anthocyanic vacuolar inclusions in Vitis vinifera
L. cell suspension cultures, Planta 231 (2010) 1343-1360.
48. F. He, L. Mu, G.L. Yan, et al., Biosynthesis of anthocyanins and their regulations in colored grapes,
Molecules 15 (2010) 9057-9091.
49. J. Zhao, D. Huhman, G. Shadle, et al., MATE2 mediates vacuolar sequestration of flavonoid gly-
cosides and glycoside malonates in Medicago truncatula, Plant Cell 23 (2011) 1536-1555.
50. K.A. Marrs, M.R. Alfenito, A.M. Lloyd, et al., A glutathione-S-transferase involved in vacuolar
transfer encoded by the maize gene Bronze-2, Nature 375 (1995) 397-400.
51. C. Garcia-Estrada, I. Vaca, F. Fierro, et al., The unprocessable isopenicillin N acyltransferase
(IATC103S) of Penicillium chrysogenum is located into peroxisomes and regulates the processing of the
wild –type preprotein, Fungal Genet Biol. 45 (2008) 1043-1052.
52. C. Garcia-Estrada, I. Vaca, M. Lamas-Maceiras, et al., In vivo transport of the intermediates of the
penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum, Appl Microbiol Biotech-
nol. 76 (2007) 169-182.
53. A. Herr, R. Fischer, Improvement of Aspergillus nidulans penicillin production by targeting AcvA
to peroxisomes, Metabolic Engg. 25 (2014) 131-139.
Prasanta Chakraborty Science Reviews - Biology, 2024, 3(4), 7-23
4
54. W. Kurzatkwoski, J. Kuczerowska, Antibiotic biosynthesis and secondary metabolism in high-
yielding strains of Streptomyces, Penicillium chrysogenum and Acremonium chrysogenum, Postepy
Mikrobiologii 56 (2017) 422-428.
55. J.M. Weber, C.K. Wierman, C.R. Hutchinson, Genetic analysis of erythromycin production in
Streptomyces erythreus, J Bacteriol. 164 (1985) 425-433.
56. S. Mahalingam, P.C. Kuzma, Y.C. John, et al., Synthesis of 6-methylpretetramid, the fully aromatic
precursor of tetracycline, J.Am. Chem. Soc. 107 (1985) 7760-7761.
57. T.H. Grossman, Tetracycline antibiotics and resistance, Cold Spring Harb.Perspect.Med. 6 (2016)
a025387.
58. G. Zhou, Q. Wang, Y. Wang, et al., Outer membrane porins contribute to antimicrobial resistance
in Gram-negative bacteria, Microorganisms 11 (2023) 1690.
59. M.F. Dutton, Enzymes and aflatoxin biosynthesis, Microbiol. Rev. 52 (1988) 274-295.
60. J. Yu., P.K. Chang, J.W. Cary, et al., Comparative mapping of aflatoxin pathway gene clusters in
Aspergillus parasiticus and Aspergillus flavus, Appl. Environ. Microbiol. 61 (1995) 2365-2371.
61. I. Caceres, A.A. Khoury, R.E. Khoury, et al., Aflatoxin biosynthesis and genetic regulation : a re-
view, MDPI Toxins 12 (2020) 150.
62. M.S. Price, J. Yu, W.C. Nierman, et al., The aflatoxin pathway regulator AflR induces gene tran-
scription inside and outside of the aflatoxin biosynthetic cluster, FEMS Microbiol. Lett. 255 (2006) 275-
279.
63. P. Chang, The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific
regulator AFLR, Mol. Genet. Genom. 268 (2003) 711-719.
64. K. Shimura, A. Okada, K. Okada, etal., Identification of a biosynthetic gene cluster in rice for
momilactones, J. Biol. Chem. 282 (2007) 34013-34018.
65. P. Chakraborty, Medicinal plant genome: a source of finding new enzymes, metabolic pathways
and drug discovery, Int. J. Curr. Med. Pharm. Res. 4 (2018) 3318-3326.
66. X. Qi, S. Bakht, M. Leggett, et al., A gene cluster for secondary metabolism in oat : implications
for the evolution of metabolic diversity in plants, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 8233-8238.
67. Y.-S. Ku, S.-S. Cheng, M.-Y. Cheung, The roles of multidrug and toxic compound extrusion (MATE)
transporters in regulating agronomic traits, MDPI agronomy 12 (2022) 878.
68. B. Darbani, M.S. Motawia, C.E. Olsen, et al., The biosynthetic gene cluster for the cyanogenic glu-
coside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter, Sci.Rep. 6
(2016) 37079.
69. H. Omote, M. Hiasa, T. Matsumoto, et al., The MATE proteins as fundamental transporters of
metabolic and xenobiotic organic cations, Trends Pharmacol Sci. 27 (2006) 587-593.
70. S. Miyamae, O. Ueda, F. Yoshimura, et al., A MATE family multidrug efflux transporter pumps
out fluoroquinolones in Bacteriodes thetaiotaomicron, Antimicrob Agents Chemother. 45 (2001) 3341-
3346.
71. G.W. kaatz, F. McAleese, S.M. Seo, Multidrug resistance in Staphylococcus aureus due to overex-
pression of a novel multidrug and toxin extrusion (MATE) transport protein, Antimicrob Agents
Chemther. 49 (2005) 1857-1864.
72. C.Y. Li, A.L. Leopoid, G.W. Sander, et al., The ORCA2 transcription factor plays a key role in
regulation of the terpenoid indole alkaloid pathway, BMC Plant Biol. 13 (2013) 155.
Science Reviews - Biology, 2024, 3(4), 7-23 Prasanta Chakraborty
5
73. H. Zhang, S. Hedhili, G. Montiel, et al., The basic helix-loop-helix transcription factor CrMYC2
controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis
in Catharanthus roseus, Plant J. 67 (2011) 61-71.
74. L. van der Fits, J. Memelink, The jasmonate-inducible AP2/ERF- domain transcription factor
ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element,
Plant J. 25 (2001) 43-53.
75. P. Paul, S.K. Singh, B. Patra, et al., Mutually regulated AP2/ERF gene clusters modulate biosyn-
thesis of specialized metabolites in plants, Plant Physiol. 182 (2020) 840-856.
76. T. Shoji, L. Yuan, ERF gene clusters : working together to regulate metabolism, Trends Plant Sci.,
26 (2021) 23-32.
77. D.H. Liu, W.W. Ren, L.J. Cui, et al., Enhanced accumulation of catharanthine and vindoline in
Catharanthus roseus hairy roots by overexpression of transcriptional factor ORCA2, African J Biotech.
10 (2011) 3260-3268.
78. J. Memelink, P. Gantet, Transcription factors involved in terpenoid indole alkaloid biosynthesis
in Catharanthus roseus, Phytochem Rev. 6 (2007) 353-362.
79. T. Han, G. Miao, Strategies, achievements, and potential challenges of plant and microbial chassis
in the biosynthesis of plant secondary metabolites, MDPI, Molecules, 29 (2024) 2106.
80. T. Sun, L. Xu, H. Sun, et al., VvVHP1;2 is transcriptionally activated by VvMYBA1 and promotes
anthocyanin accumulation of grape berry skins via glucose signal, Front. Plant Sci. 8 (2017) 1811.
81. V. Ferreira, O. Pinto-Carnide, R. Arroyo-Garcia, et al., Berry color variation in grapevine as a
source of diversity, Plant Physiol. Biochem. 132 (2018) 696-707.
82. L. Chen, B. Hu, Y. Qin, et al., Advance of the negative regulation of anthocyanin biosynthesis by
MYB transcription factors, Plant Physiol. Biochem. 136 (2019) 178-187.
83. L. Meng, C. Qi, C. Wang, et al., Determinant factors and regulatory systems for anthocyanin bio-
synthesis in rice apiculi and stigmas, Rice 14 (2021) 37.
84. J. Zheng, H. Wu, H. Zhu, et al., Determining factors, regulation system, and domestication of
anthocyanin biosynthesis in rice leaves, New Phytol. 223 (2019) 705-721.
85. L. Li, B, Zhao, L. Xi-Hong, et al., Differential expression of anthocyanin biosynthetic genes and
transcription factor PcMYB10 in Pears (Pyrus communis L.), PLoS ONE 7 (2012) e 46070.
86. C. Gomez, N. Terrier, I. Torregrosa, et al., Grapevine MATE-type proteins act as vacuolar H+-
dependent acylated anthocyanin transporter, Plant Physiol. 150 (2009) 402-415.
87. R. Perez-Diaz, M. Ryngajllo, j. Perez-Diaz, et al., VvMATE1 and VvMATE2 encode putative pro-
anthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Rep. 33
(2014) 1147=1159
88. J. Li, Y. Qin, C. Zhao, et al., Tetracycline antibiotics : potential anticancer drugs, Eur. J. Pharmacol.
956 (2023) 175949.
89. S. Yin, W. Wang, X. Wang, et al., Identification of a cluster-situated activator of oxytetracycline
biosynthesis and manipulation of its expression for improved oxytetracycline production in Strepto-
myces rimosus, Microb Cell Fact. 14 (2015) 46.
90. J. F. Martin, P. Liras, Engineering of regulatory cascades and networks controlling antibiotic bio-
synthesis in Streptomyces, Curr Opin Microbiol. 13 (2010) 263-273.
91. M.J. Ryan, J.A. Lotvin, N. Strathy, et al., Clone of the biosynthetic pathway for chlorotetracycline
and tetracycline formation and cosmids useful therein, US Patent, 5 (1999) 866,410.
Prasanta Chakraborty Science Reviews - Biology, 2024, 3(4), 7-23
6
92. P. Wang, W. Kim, L.B. Pickens, et al., Heterologus expression and manipulation of three tetracy-
cline biosynthetic pathways, Angew Chem Int Ed Engl. 51 (2012) 11136- 11140.
93. J.W. Bok, N.P. Keller, LaeA , a regulator of secondary metabolism in Aspergillus spp, Eukaryotic
Cell., 3 (2004) 527-535.
94. O. Bayram, S. Krappmann, M. Ni, et al., VelB/VeA/LaeA complex coordinates light signal with
fungal development and secondary metabolism, Science 320 (2008) 1504-1506.
95. K. Kosalkova, C. Garcia-Estrada, R.V. Ullan, et al., The global regulator LaeA controls penicillin
biosynthesis, pigmentation and sporulation but not roquefortine C synthesis in Penicillium chryso-
genum, Biochimie 91 (2009) 214-225.
96. J.W. Bok, D. Noodermeer, S.P. Kale, et al., Secondary metabolic gene cluster silencing in Aspergil-
lus nidulans, Mol.Microbiol. 61 (2006) 1636-1645.
97. W. Kurzatkowski, A.G. Kuczerowska, Compartmentalization in cephalosporin C biosynthesis by
industrial strains of Acremonium Chrysogenum, Postepy Mikrobiologii 54 (2015) 374-379.
98. J.F. Martin, Transport systems, intracellular traffic of intermediates and secretion of beta-lactam
antibiotics in fungi, Fungal Biol Biotechnol. 7 (2020) 6.
99. J.F. Martin, R.V. Ullan, J. Casqueiro, Novel genes involved in cephalosporin biosynthesis: the
three-component isopenicillin N epimerase system, Adv Biochem Eng Biotechnol. 88 (2004) 91-109.
100. R.V. Ullan, J. Casqueiro, O. Banuelos, et al., A novel epimerization system in fungal secondary
metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum,
J Biol Chem. 277 (2002) 46216-46225.
101. W.D. Perez-Perez, U. Carrasco-Navarro, C. Garcia-Estrada et al., bZIP transcription factors
PcYap1 and PcRsmA link oxidative stress response to secondary metabolism and development in
Penicillium chrysogenum, Microbial Cell Fctories 21 (2022) 50.
102. Y. Xu, A. Willems, C. Auyeung, et al., A two-step mechanism for the activation of actinorhodin
export and resistance in Streptomyces coelicolor, mBio 3 (2012) 00191.
103. Y.S. Yan, Q.Y. Yang, L.S. Zhou, et al., MilR3, a unique SARP family pleiotropic regulator in Strep-
tomyces bingchenggensis, Arch. Microbiol. 204 (2022) 631.
104. J. Li, Y. Li, G. Niu, et al., NosP-regulated nosiheptide production responds to both peptidyl and
small-molecule ligands derived from the precursor peptide, Cell. Chem. Biol. 25 (2018) 143-153.
105. Y. Yan, H. Xia, The roles of SARP family regulators involved in secondary metabolism in Strep-
tomyces, Front. Microbiol. 15 (2024) 1368809.
106. R. Devine, H.P. McDonald, Z. Qin, et al., Re-wiring the regulation of formicamycin biosynthetic
gene cluster to enable the development of promising antibacterial compounds, Cell Chem. Biol. 28
(2021) 515-523.e5.
107. A.W. Puri, Specialized metabolites from methylotropic proteobacteria, Curr Issues Mol Biol. 33
(2019) 211-224.
108. J.K. Kennedy, S.G. Auclair, C. Kendrew, et al., Modulation of polyketide synthase activity by
accessory proteins during lovastatin biosynthesis, Science 284 (1999) 1368-1372.
109. J.K. Hicks, K. Shimizu, N.P. Keller, Genetics and biosynthesis of aflatoxins and sterigmatocystin,
In F. Kempken and J.W. Bennett (ed.), The mycota, vol. XI. Springer-Verlag, Berlin, Germany, (2002)
55-69.
110. C.E.H. Assaf, C. Zetina-Serrano, N Tahtah et al., Regulation of secondary metabolism in the Pen-
icillium genus, Int J Mol.Sci. 21 (2020) 9462.
Science Reviews - Biology, 2024, 3(4), 7-23 Prasanta Chakraborty
7
111. Z. Zhao, S. Gu, D. Liu, et al., The putative methyltransferase LaeA regulates mycelium growth
and cellulase production in Myceliophthora thermophila, Biotechnol Biofuels Bioprod. 16 (2023) 58.
112. N. Kato, W. Brooks, A.M . Calvo, The expression of sterigmatocystin and penicillin genes in
Aspergillus nidulans is controlled by veA, a gene required for sexual development, Eukaryot Cell 2
(2003) 1178-1186.
113. P.A. Castro, A. C. Colabardini, M. Moraes, et al., Regulation of gilotoxin biosynthesis and pro-
tection in Aspergillus species, PLOS Genetics 18 (2022) e1009965.
114. K.C. Ehrlich, J. Yu, P. J. Cotty, Aflatoxin biosynthesis gene clusters and flanking regions, J Appl
Microbiol. 99 (2005) 518-527.
115. Z. Wasil, A.K. Khomaizon, C. Butts, et al., One pathway, many compounds: heterologous ex-
pression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity, Chem.Sci. 4
(2013) 3845-3856.
116. B.P. Knox, N.P. Keller, Key players in the regulation of fungal secondary metabolism, Biosynthe-
sis and Molecular Genetics of Fungal Sec.Metabolites, 2 (2015) 13-28.
117. Y. Zhang, Y. Lu, H.E. Sayyed, et al., Transcription factor dynamics in plants : Insights and tech-
nologies for in vivo imaging, Plant Physiol., 189 (2022) 23-36.
118. P. Paul, S.K. Singh, B. patra, et al., Mutually regulated AP2/ERF gene cluster modulate biosyn-
thesis of specialized metabolites in plants, Plant Physiol. 182 (2020) 840-856.
119. S.K. Singh, B. Patra, P. Paul, et al., Revisiting the ORCA gene cluster that regulates terpenoid
indole alkaloid biosynthesis in Catharanthus roseus, Plant Sci. 293 (2020) 110408.
120. P. Cardenas, P. Sonawane, J. Pollier, et al., GAME9 regulates the biosynthesis of steroidal alka-
loids and upstream isoprenoids in the plant mevalonate pathway, Nat Commun 7 (2016) 10654.
121. A. Okada, K. Okada, K. Miyamoto, et al., OsTGAP1, a bZIP transcription factor, coordinately
regulates the inductive production of diterpenoid phytoalexins in rice, J Biol Chem. 284 (2009) 26510-
26518.