Martina Rossi Science Reviews - Biology, 2023, 2(3), 18 - 24
2
15. Dong W, Kantor B. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas:
Current State and Perspectives. Viruses. 2021 Jul 1;13(7):1288.
16. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, et al. Therapeutic haemoglobin
synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000
Jul 6;406(6791):82–6.
17. Magrin E, Miccio A, Cavazzana M. Lentiviral and genome-editing strategies for the treatment of β-
hemoglobinopathies. Blood. 2019 Oct 10;134(15):1203–13.
18. Brendel, C., Guda, S., Renella, R., Bauer, D.E., Canver, M.C., Kim, Y.-J., Heeney, M.M., Klatt, D., Fogel,
J., Milsom, M.D., et al. (2016). Lineage-specific BCL11A knockdown circumvents toxicities and re-
verses sickle phenotype. J. Clin. Invest. 126, 3868–3878. https://doi.org/10.1172/JCI87885.
19. Guda, S., Brendel, C., Renella, R., Du, P., Bauer, D.E., Canver, M.C., Grenier, J.K., Grimson, A.W.,
Kamran, S.C., Thornton, J., et al. (2015). miRNA-embedded shRNAs for lineage-specific BCL11A
knockdown and hemoglobin F induction. Mol. Ther. 23, 1465–1474.
https://doi.org/10.1038/mt.2015.113.
20. Brendel, C., Negre, O., Rothe, M., Guda, S., Parsons, G., Harris, C., McGuinness, M., Abriss, D.,
Tsytsykova, A., Klatt, D., et al. (2020). Preclinical evaluation of a novel len- tiviral vector driving line-
age-specific BCL11A knockdown for sickle cell gene therapy. Mol. Ther. Methods Clin. Dev. 17, 589–
600. https://doi.org/10.1016/j.omtm.2020. 03.015.
21. Brusson M, Chalumeau A, Martinucci P, Romano O, Felix T, Poletti V, et al. Novel lentiviral vectors
for gene therapy of sickle cell disease combining gene addition and gene silencing strategies. Mol
Ther Nucleic Acids. 2023 Jun 13;32:229–46.
22. Cornu T, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat
Med. (2017) 23:415–23. https://doi.org/10.1038/nm.4313.
23. Carusillo A, Mussolino C. DNA damage: from threat to treatment. Cells. (2020) 9:1665.
https://doi.org/10.3390/cells9071665.
24. Salisbury-Ruf C, Larochelle A. Advances and obstacles in homology- mediated gene editing of hema-
topoietic stem cells. J Clin Med. (2021) 10:513. https://doi.org/10.3390/jcm100305131.
25. Cannan WJ, Pederson DS. Mechanisms and Consequences of Double-strand DNA Break Formation in
Chromatin. J Cell Physiol. 2016 Jan;231(1):3–14.
26. Ran F, Hsu P, Lin C, Gootenberg J, Konermann S, Trevino A, et al. Double nicking by RNA-guided
CRISPR Cas9 for enhanced genome editing specificity. Cell. (2013) 154:1380–9.
https://doi.org/10.1016/j.cell.2013.08.021
27. Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, Li Y, et al. Base editing of haema-
topoietic stem cells rescues sickle cell disease in mice. Nature. 2021 Jul;595(7866):295–302.
28. Everette KA, Newby GA, Levine RM, Mayberry K, Jang Y, Mayuranathan T, et al. Ex vivo prime edit-
ing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in
mice. Nat Biomed Eng. 2023 May;7(5):616–28.
Conflict of Interest statement
The author declares no conflict of interest.