Science Reviews - Biology, 2023, 2(2), 30 - 39 Raquel Rodrigues
Using spore-forming bacteria to treat cancer: recent
advancements in clostridial-based therapies
Raquel Rodrigues, PhD
Independent Researcher, Aveiro, Portugal; raquel.sof.rodrigues@gmail.com
https://orcid.org/0000-0002-2903-3258
References
Abedi Jafari, F., Abdoli, A., Pilehchian, R., Soleimani, N., & Hosseini, S. M. (2022). The oncolytic ac-
tivity of Clostridium novyi nontoxic spores in breast cancer. Bioimpacts, 12(5), 405-414.
https://doi.org/10.34172/bi.2021.25
Andryukov, B. G., Karpenko, A. A., & Lyapun, I. N. (2021). Learning from Nature: Bacterial Spores
as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med, 12(3), 105-122.
https://doi.org/10.17691/stm2020.12.3.13
Bae, G.-H., Ryu, Y.-H., Han, J., Kim, S. H., Park, C. G., Park, J.-H., . . . Park, W. (2023). Multifunctional
porous microspheres encapsulating oncolytic bacterial spores and their potential for cancer immuno-
therapy. Biomaterials Science, 11(13), 4652-4663. https://doi.org/10.1039/D3BM00635B
Barbé, S., Van Mellaert, L., Theys, J., Geukens, N., Lammertyn, E., Lambin, P., & Anné, J. (2005). Se-
cretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as
a tool for anti-tumor treatment. FEMS Microbiology Letters, 246(1), 67-73.
https://doi.org/10.1016/j.femsle.2005.03.037.
Bettegowda, C., Huang, X., Lin, J., Cheong, I., Kohli, M., Szabo, S. A., . . . Zhou, S. (2006). The genome
and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nature Biotechnology, 24(12),
1573-1580. https://doi.org/10.1038/nbt1256.
Cano, R., & Borucki, M. (1995). Revival and identification of bacterial spores in 25- to 40-million-year-
old Dominican amber. Science, 268(5213), 1060-1064. Retrieved from http://science.science-
mag.org/content/sci/268/5213/1060.full.pdf. https://doi.org/10.1126/science.7538699
Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., . . .
Farrow, J. A. E. (1994). The phylogeny of the genus Clostridium: proposal of five new genera and
eleven new species combinations. International Journal of Systematic and Evolutionary Microbiol-
ogy, 44(4), 812-826. Retrieved from http://ijs.microbiologyresearch.org/content/jour-
nal/ijsem/10.1099/00207713-44-4-812. https://doi.org/10.1099/00207713-44-4-812
Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W., & Vogelstein, B. (2001). Combination bacte-
riolytic therapy for the treatment of experimental tumors. Proceedings of the National Academy of
Sciences, 98(26), 15155-15160. Retrieved from https://www.pnas.org/con-
tent/pnas/98/26/15155.full.pdf. https://doi.org/10.1073/pnas.251543698
Desvaux, M., Guedon, E., & Petitdemange, H. (2000). Cellulose catabolism by Clostridium celluloly-
ticum growing in batch culture on defined medium. Applied and Environmental Microbiology, 66(6),
2461-2470. Retrieved from http://aem.asm.org/content/66/6/2461.abstract.
https://doi.org/10.1128/aem.66.6.2461-2470.2000
Diaz, L. A., Jr., Cheong, I., Foss, C. A., Zhang, X., Peters, B. A., Agrawal, N., . . . Huso, D. L. (2005).
Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicological Sciences, 88(2), 562-
575. https://doi.org/10.1093/toxsci/kfi316.
Raquel Rodrigues Science Reviews - Biology, 2023, 2(2), 30 - 39
Galperin, M. Y., Mekhedov, S. L., Puigbo, P., Smirnov, S., Wolf, Y. I., & Rigden, D. J. (2012). Genomic
determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific
genes. Environmental Microbiology, 14(11), 2870-2890. https://doi.org/10.1111/j.1462-
2920.2012.02841.x
Gu, Y., Patterson, A. V., Atwell, G. J., Chernikova, S. B., Brown, J. M., Thompson, L. H., & Wilson, W.
R. (2009). Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated
dinitrobenzamide mustard PR-104A. Molecular Cancer Therapeutics, 8(6), 1714-1723.
https://doi.org/10.1158/1535-7163.MCT-08-1209.
Heap, J. T., Theys, J., Ehsaan, M., Kubiak, A. M., Dubois, L., Paesmans, K., . . . Minton, N. P. (2014).
Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors
in vivo. Oncotarget, 5(7), 1761-1769. Retrieved from http://www.impactjournals.com/oncotar-
get/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=1761.
https://doi.org/10.18632/oncotarget.1761
Helsby, N. A., Ferry, D. M., Patterson, A. V., Pullen, S. M., & Wilson, W. R. (2004). 2-Amino metabo-
lites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. British
journal of cancer, 90(5), 1084-1092. https://doi.org/10.1038/sj.bjc.6601612.
Janku, F., Zhang, H. H., Pezeshki, A., Goel, S., Murthy, R., Wang-Gillam, A., . . . Gounder, M. M.
(2021). Intratumoral injection of Clostridium novyi-NT spores in patients with treatment-refractory
advanced solid tumors. Clinical Cancer Research, 27(1), 96-106. https://doi.org/10.1158/1078-
0432.CCR-20-2065.
Karnofsky, D. A. (1968). Mechanisms of action of anticancer drugs at a cellular level. Ca: A Cancer
Journal For Clinicians, 18(4), 232-234. https://doi.org/10.3322/canjclin.18.4.232
Kennedy, M. J., Reader, S. L., & Swierczynski, L. M. (1994). Preservation records of micro-organisms:
evidence of the tenacity of life. Microbiology, 140(10), 2513-2529. Retrieved from http://mic.microbi-
ologyresearch.org/content/journal/micro/10.1099/00221287-140-10-2513.
https://doi.org/10.1099/00221287-140-10-2513
Kubiak, A. M., Bailey, T. S., Dubois, L. J., Theys, J., & Lambin, P. (2021). Efficient secretion of murine
IL-2 from an attenuated strain of Clostridium sporogenes, a novel delivery vehicle for cancer immu-
notherapy. Frontiers in microbiology, 12. Retrieved from https://www.frontiersin.org/arti-
cles/10.3389/fmicb.2021.669488. https://doi.org/10.3389/fmicb.2021.669488
Kubiak, A. M., & Minton, N. P. (2015). The potential of clostridial spores as therapeutic delivery ve-
hicles in tumour therapy. Research in Microbiology, 166(4), 244-254. Retrieved from http://www.sci-
encedirect.com/science/article/pii/S0923250814002551.
https://doi.org/10.1016/j.resmic.2014.12.006
Kubiak, A. M., Poehlein, A., Budd, P., Kuehne, S. A., Winzer, K., Theys, J., . . . Minton, N. P. (2015).
Complete genome sequence of the nonpathogenic soil-dwelling bacterium Clostridium sporogenes
strain NCIMB 10696. Genome Announcements, 3(4), e00942-00915. Retrieved from http://ge-
nomea.asm.org/content/3/4/e00942-15.abstract. https://doi.org/10.1128/genomeA.00942-15
Lamed, R., & Zeikus, J. G. (1980). Ethanol production by thermophilic bacteria: relationship between
fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and
Thermoanaerobium brockii. Journal of Bacteriology, 144(2), 569-578. Retrieved from
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC294704/.
Ludwig, W., Schleifer, K., & Whitman, W. B. (2015). Bacilli class. nov. In Bergey's Manual of System-
atics of Archaea and Bacteria (pp. 1-1).
Minton, N. P., Mauchline, M. L., Lemmon, M. J., Brehm, J. K., Fox, M., Michael, N. P., . . . Brown, J.
M. (1995). Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiology Reviews,
17(3), 357-364. https://doi.org/10.1111/j.1574-6976.1995.tb00219.x.
Science Reviews - Biology, 2023, 2(2), 30 - 39 Raquel Rodrigues
Möse, J. R., & Möse, G. (1964). Oncolysis by clostridia. I. Activity of Clostridium butyricum (M-55)
and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Research, 24(2 Part 1), 212-
216. Retrieved from http://cancerres.aacrjournals.org/content/24/2_Part_1/212.abstract.
Mowday, A. M., Dubois, L. J., Kubiak, A. M., Chan-Hyams, J. V. E., Guise, C. P., Ashoorzadeh, A., . . .
Patterson, A. V. (2022). Use of an optimised enzyme/prodrug combination for Clostridia directed
enzyme prodrug therapy induces a significant growth delay in necrotic tumours. Cancer Gene Ther-
apy, 29(2), 178-188. https://doi.org/10.1038/s41417-021-00296-7.
Napoli, F., Olivieri, G., Russo, M. E., Marzocchella, A., & Salatino, P. (2010). Butanol production by
Clostridium acetobutylicum in a continuous packed bed reactor. Journal of Industrial Microbiology
& Biotechnology, 37(6), 603-608. https://doi.org/10.1007/s10295-010-0707-8.
Parker, R. C., Plummer, H. C., Siebenmann, C. O., & Chapman, M. G. (1947). Effect of histolyticus
infection and toxin on transplantable mouse tumors. Proceedings of the Society for Experimental Bi-
ology and Medicine, 66(2), 461-467. Retrieved from https://jour-
nals.sagepub.com/doi/abs/10.3181/00379727-66-16124. https://doi.org/10.3181/00379727-66-
16124
Pokrovsky, V. S., Anisimova, N. Y., Davydov, D. Z., Bazhenov, S. V., Bulushova, N. V., Zavilgelsky,
G. B., . . . Manukhov, I. V. (2019). Methionine gamma lyase from Clostridium sporogenes increases
the anticancer efficacy of doxorubicin on A549 cancer cells in vitro and human cancer xenografts. In
R. M. Hoffman (Ed.), Methionine Dependence of Cancer and Aging: Methods and Protocols (pp. 243-
261). New York, NY: Springer New York.
Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Jarvinen, T., & Savolainen, J. (2008).
Prodrugs: design and clinical applications. Nat Rev Drug Discov, 7(3), 255-270.
https://doi.org/10.1038/nrd2468
Roberts, N. J., Zhang, L., Janku, F., Collins, A., Bai, R. Y., Staedtke, V., . . . Zhou, S. (2014). Intratumoral
injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med, 6(249),
249ra111. https://doi.org/10.1126/scitranslmed.3008982
Setlow, P. (2003). Spore germination. Current Opinion in Microbiology, 6(6), 550-556. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1369527403001371.
https://doi.org/10.1016/j.mib.2003.10.001
Setlow, P. (2007). I will survive: DNA protection in bacterial spores. Trends in Microbiology, 15(4),
172-180. Retrieved from http://www.sciencedirect.com/science/article/pii/S0966842X07000261.
https://doi.org/10.1016/j.tim.2007.02.004
Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. Ca: A Cancer Jour-
nal For Clinicians, 73(1), 17-48. Retrieved from https://acsjournals.onlineli-
brary.wiley.com/doi/abs/10.3322/caac.21763. https://doi.org/10.3322/caac.21763
Staedtke, V., Bai, R.-Y., Sun, W., Huang, J., Kibler, K. K., Tyler, B. M., . . . Riggins, G. J. (2015). Clos-
tridium novyi -NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotar-
get, 6(8). Retrieved from https://www.oncotarget.com/article/3627/text/.
Staedtke, V., Gray-Bethke, T., Liu, G., Liapi, E., Riggins, G. J., & Bai, R. Y. (2022). Neutrophil depletion
enhanced the Clostridium novyi-NT therapy in mouse and rabbit tumor models. Neurooncol Adv,
4(1), vdab184. https://doi.org/10.1093/noajnl/vdab184
Tharmalingham, H., & Hoskin, P. (2019). Clinical trials targeting hypoxia. Br J Radiol, 92(1093),
20170966. https://doi.org/10.1259/bjr.20170966
Thiele, E. H., Arison, R. N., & Boxer, G. E. (1964). Oncolysis by clostridia. III. Effects of clostridia and
chemotherapeutic agents on rodent tumors. Cancer Research, 24(2 Part 1), 222-233. Retrieved from
http://cancerres.aacrjournals.org/content/24/2_Part_1/222.abstract.
Raquel Rodrigues Science Reviews - Biology, 2023, 2(2), 30 - 39
Tirandaz, H., Hamedi, J., & Marashi, S.-A. (2006). Application of β-lactamase-dependent prodrugs in
clostridial-directed enzyme therapy (CDEPT): A proposal. Medical Hypotheses, 67(4), 998-999. Re-
trieved from https://www.sciencedirect.com/science/article/pii/S0306987706003409.
https://doi.org/10.1016/j.mehy.2006.05.008
Tran, H. G., Desmet, T., Saerens, K., Waegeman, H., Vandekerckhove, S., D'hooghe, M., . . . Soetaert,
W. (2012). Biocatalytic production of novel glycolipids with cellodextrin phosphorylase. Bioresource
Technology, 115, 84-87. Retrieved from http://www.sciencedirect.com/science/arti-
cle/pii/S0960852411013733. https://doi.org/10.1016/j.biortech.2011.09.085
Weinmann, M., Belka, C., & Plasswilm, L. (2004). Tumour hypoxia: impact on biology, prognosis and
treatment of solid malignant tumours. Oncology Research and Treatment, 27(1), 83-90. Retrieved
from http://www.karger.com/DOI/10.1159/000075611. https://doi.org/10.1159/000075611
Xu, H., Luo, H., Zhang, J., Li, K., & Lee, M. H. (2023). Therapeutic potential of Clostridium butyricum
anticancer effects in colorectal cancer. Gut Microbes, 15(1), 2186114.
https://doi.org/10.1080/19490976.2023.2186114
Zhang, Y. L., Lü, R., Chang, Z. S., Zhang, W. Q., Wang, Q. B., Ding, S. Y., & Zhao, W. (2014). Clostrid-
ium sporogenes delivers interleukin-12 to hypoxic tumours, producing antitumour activity without
significant toxicity. Lett Appl Microbiol, 59(6), 580-586. https://doi.org/10.1111/lam.12322
Zheng, L., Zhang, Z., Khazaie, K., Saha, S., Lewandowski, R. J., Zhang, G., & Larson, A. C. (2015).
MRI-monitored intra-tumoral injection of iron-oxide labeled Clostridium novyi-NT anaerobes in pan-
creatic carcinoma mouse model. PLoS ONE, 9(12), e116204. https://doi.org/10.1371/jour-
nal.pone.0116204.