Science Reviews - Biology, 2023, 2(2), 1 - 20 Milena Batalla
All-natural 5-MeO-DMT sigma receptor 1 agonist and
its therapeutic impact in mental and neurodegenera-
tive diseases through mitochondrial activation
Milena Batalla, PhD
Panarum Corporation, USA;
1. A J Ferrari, D F Santomauro, A M M Herrera, J Shadid, C Ashbaugh, H E Erskine, F J Charlson, M
Naghavi, S I Hay, T Vos, and H A Whiteford. Global, regional, and national burden of 12 mental
disorders in 204 countries and territories, 19902019: a systematic analysis for the Global Burden of
Disease Study 2019. Lancet Psychiatry (2022); 9: 13750.
2. William M Carroll. The global burden of neurological disorders. Lancet Neurology (2019) 18, 5,
418 419.
3. Nguyen, L. et al. Role of sigma-1 receptors in neurodegenerative diseases. J. Pharmacol. Sci. (2015)
127, 1729.
4. Dakic, V. et al. Short-term changes in the proteome of human cerebral organoids induced by 5-
MeO-DMT. Sci. Rep. (2017) 7, 12863.
5. Anna O Ermakova, Fiona Dunbar, James Rucker and Matthew W Johnson. A narrative synthesis
of research with 5-MeO-DMT. Journal of Psychopharmacology 2022, Vol. 36(3) 273294.
6. Jodi Nunnari and Anu Suomalainen. Mitochondria: In Sickness and in Health. Cell; (2012) 148 (6):
7. Minocherhomji, S., Tollefsbol, T. O. & Singh, K. K. Mitochondrial regulation of epigenetics and its
role in human diseases. Epigenetics (2012) 7, 326334.
8. Carlos Cardanho-Ramos and Vanessa Alexandra Morais. Mitochondrial Biogenesis in Neurons:
How and Where. Int J Mol Sci. (2021) 22 (23): 13059.
9. Shaw-Hwa Jou, Nan-Yin Chiu, Chin-San Liu. Mitochondrial Dysfunction and Psychiatric
Disorders. Chang Gung Med J (2009) 32, 370-9.
10. Hariharan Murali Mahadevan, Arsalan Hashemiaghdam, Ghazaleh Ashrafi and Angelika Betti
na Harbauer. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson’s Disease.
Adv. Biology (2021), 5, 2100663, 1 of 18.
11. Kalainayakan, S. P., FitzGerald, K. E., Konduri, P. C., Vidal, C. & Zhang, L. Essential roles of
mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci. (2018)
8, 56.
12. Fariss, M. W. Role of mitochondria in toxic oxidative stress. Mol. Interv. (2005) 5, 94111.
13. Van Houten, B., Woshner, V. & Santos, J. H. Role of mitochondrial DNA in toxic responses to
oxidative stress. DNA Repair (2006) 5, 145152.
Milena Batalla Science Reviews - Biology, 2023, 2(2), 1 - 20
14. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. (2009) 417, 113.
15. Hitchler, M. J. & Domann, F. E. Redox regulation of the epigenetic landscape in Cancer: A role for
metabolic reprogramming in remodeling the epigenome. Free Radic. Biol. Med. (2012) 53, 21782187.
16. Wallace, D. C., Fan, W. & Procaccio, V. Mitochondrial Energetics and Therapeutics. Annu. Rev.
Pathol. Mech. Dis. (2010) 5, 297348.
17. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell (2011) 144, 646
18. Nakajima, E. C. & Van Houten, B. Metabolic symbiosis in cancer: Refocusing the Warburg lens.
Mol. Carcinog. (2013) 52, 329337.
19. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. (2016)
17, 487500.
20. Hayashi, T., Rizzuto, R., Hajnoczky, G. & Su, T.-P. MAM: more than just a housekeeper. Trends
Cell Biol. (2009) 19, 8188.
21. Rizzuto, R. & Pozzan, T. Microdomains of Intracellular Ca 2+: Molecular Determinants and
Functional Consequences. Physiol. Rev. (2006) 86, 369408.
22. Voelker, D. R. Genetic and Biochemical Analysis of Non-Vesicular Lipid Traffic. Annu. Rev. Bio
chem. (2009) 78, 827856.
23. Kelly Anne Chamberlain and Zu-Hang Sheng. Mechanisms for the maintenance and regulation
of axonal energy supply. J Neurosci Res. (2019) 97(8): 897913.
24. Weng, T.-Y., Tsai, S.-Y. A. & Su, T.-P. Roles of sigma-1 receptors on mitochondrial functions rele
vant to neurodegenerative diseases. J. Biomed. Sci. (2017) 24, 74.
25. Mori, T., Hayashi, T., Hayashi, E. & Su, T.-P. Sigma-1 Receptor Chaperone at the ER-
Mitochondrion Interface Mediates the Mitochondrion-ER-Nucleus Signaling for Cellular Survival.
PLoS ONE (2013) 8, e76941.
26. Rousseaux, C. G. & Greene, S. F. Sigma receptors [ σ Rs]: biology in normal and diseased states.
J. Recept. Signal Transduct. (2015) 162.
27. Hayashi, T. The Sigma-1 Receptor in Cellular Stress Signaling. Front. Neurosci. (2019) 13, 733.
28. Carmichael, J. et al. Bacterial and yeast chaperones reduce both aggregate formation and cell
death in mammalian cell models of Huntington’s disease. Proc. Natl. Acad. Sci. (2000) 97, 9701
29. Kabuta, T. & Wada, K. Insights into links between familial and sporadic Parkinson’s disease:
Physical relationship between UCH-L1 variants and chaperone-mediated autophagy. Autophagy
(2008) 4, 827829.
30. Caamaño, C. A., Morano, M. I. & Akil, H. Corticosteroid receptors: a dynamic interplay between
protein folding and homeostatic control. Possible implications in psychiatric disorders. Psychophar
macol. Bull. (2001) 35, 623.
31. Tsai, S.-Y., Hayashi, T., Mori, T. & Su, T.-P. Sigma-1 Receptor Chaperones and Diseases. Cent.
Nerv. Syst. Agents Med. Chem. (2009) 9, 184189.
Science Reviews - Biology, 2023, 2(2), 1 - 20 Milena Batalla
32. Hayashi, T. The Sigma-1 Receptor in Cellular Stress Signaling. Front. Neurosci. (2019) 13, 733.
33. Su, T.-P., Hayashi, T., Maurice, T., Buch, S. & Ruoho, A. E. The sigma-1 receptor chaperone as an
inter-organelle signaling modulator. Trends Pharmacol. Sci. (2010) 31, 557566.
34. Su, T.-P., Su, T.-C., Nakamura, Y. & Tsai, S.-Y. The Sigma-1 Receptor as a Pluripotent Modulator
in Living Systems. Trends Pharmacol. Sci. (2016) 37, 262278.
35. Yano, H. et al. Pharmacological profiling of sigma 1 receptor ligands by novel receptor homomer
assays. Neuropharmacology (2018) 133, 264275.
36. Mishra, A. K. et al. The sigma-1 receptors are present in monomeric and oligomeric forms in li
ving cells in the presence and absence of ligands. Biochem. J. (2015) 466, 263271.
37. Bastianetto, S., Ramassamy, C., Poirier, J. & Quirion, R. Dehydroepiandrosterone (DHEA) protects
hippocampal cells from oxidative stress-induced damage. Mol. Brain Res. (1999) 66, 3541.
38. Kaushal, N. & R. Matsumoto, R. Role of Sigma Receptors in Methamphetamine-Induced Neuro
toxicity. Curr. Neuropharmacol. (2011) 9, 5457. 10.2174/157015911795016930
39. Kaushal, N. et al. CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic
effects of methamphetamine in mice. Neuropharmacology (2011) 61, 9921000.
40. Brammer, M. K., Gilmore, D. L. & Matsumoto, R. R. Interactions between 3,4-methylenedioxy
methamphetamine and σ1 receptors. Eur. J. Pharmacol. (2006) 553, 141145.
41. Meririnne, E., Kankaanpää, A., Lillsunde, P. & Seppälä, T. The Effects of Diazepam and Zolpidem
on Cocaine- and Amphetamine-Induced Place Preference. Pharmacol. Biochem. Behav. (1999) 62,
42. Cormaci, G., Mori, T., Hayashi, T. & Su, T.-P. Protein Kinase A Activation Down-Regulates, Whe
reas Extracellular Signal-Regulated Kinase Activation Up-Regulates σ-1 Receptors in B-104 Cells: I
mplication for Neuroplasticity. J. Pharmacol. Exp. Ther. (2007) 320, 202210.
43. Cobos, E., Entrena, J., Nieto, F., Cendan, C. & Pozo, E. Pharmacology and Therapeutic Potential
of Sigma1 Receptor Ligands. Curr. Neuropharmacol. (2008) 6, 344366.
44. Paschos, K. A., Veletza, S. & Chatzaki, E. Neuropeptide and Sigma Receptors as Novel Thera
peutic Targets for the Pharmacotherapy of Depression: CNS Drugs (2009) 23, 755772.
45. Kulkarni, S. K. & Dhir, A. σ-1 receptors in major depression and anxiety. Expert Rev. Neurother.
(2009) 9, 10211034.
46. Su, T.-P., Hayashi, T. & Vaupel, D. B. When the Endogenous Hallucinogenic Trace Amine N,N -
Dimethyltryptamine Meets the Sigma-1 Receptor. Sci. Signal. (2009) 2.
47. Nguyen, L., Lucke-Wold, B. P., Mookerjee, S., Kaushal, N. & Matsumoto, R. R. Sigma-1 Receptors
and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of
Milena Batalla Science Reviews - Biology, 2023, 2(2), 1 - 20
Neurodegeneration and Neuroprotection. in Sigma Receptors: Their Role in Disease and as
Therapeutic Targets (eds. Smith, S. B. & Su, Springer International Publishing (2017) T.-P. Vol. 964
48. Hayashi, T. & Su, T.-P. The potential role of sigma-1 receptors in lipid transport and lipid raft re
constitution in the brain: Implication for drug abuse. Life Sci. (2005) 77, 16121624.
49. Gill, S. S. & Pulido, O. M. Review Article: Glutamate Receptors in Peripheral Tissues: Current
Knowledge, Future Research, and Implications for Toxicology. Toxicol. Pathol. (2001) 29, 208223.
50. Wolfe, S. A., Culp, S. G. & De Souza, E. B. σ-Receptors in Endocrine Organs: Identification, Cha
racterization, and Autoradiographic Localization in Rat Pituitary, Adrenal, Testis, and Ovary. En
docrinology (1989) 124, 11601172.
51. Wolfe, S. A., Kulsakdinun, C., Battaglia, G., Jaffe, J. H. & De Souza, E. B. Initial identification and
characterization of sigma receptors on human peripheral blood leukocytes. J. Pharmacol. Exp. Ther.
(1988) 247, 11141119.
52. Narayanan, S., Mesangeau, C., H. Poupaert, J. & R. McCurdy, C. Sigma Receptors and Cocaine
Abuse. Curr. Top. Med. Chem. (2011) 11, 11281150.
53. Al-Saif, A., Al-Mohanna, F. & Bohlega, S. A mutation in sigma-1 receptor causes juvenile
amyotrophic lateral sclerosis. Ann. Neurol. (2011) 70, 913919.
54. Luty, A. A. et al. Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar
degeneration-motor neuron disease. Ann. Neurol. (2010) 68, 639649.
55. Lau, A. & Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflüg. Arch.
- Eur. J. Physiol. (2010) 460, 525542.
56. Hazell, A. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies.
Neurochem. Int. (2007) 50, 941953.
57. Mancuso, R. et al. Sigma-1R Agonist Improves Motor Function and Motoneuron Survival in ALS
Mice. Neurotherapeutics (2012) 9, 814826.
58. Hayashi, T. & Su, T.-P. Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regula
te Ca2+ Signaling and Cell Survival. Cell (2007) 131, 596610.
59. Reynolds, A., Laurie, C., Lee Mosley, R. & Gendelman, H. E. Oxidative Stress and the Pathogenesis
of Neurodegenerative Disorders. in International Review of Neurobiology. Elsevier (2007) vol. 82
60. Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative di
seases. Nature (2006) 443, 787795.
61. Mori, T., Hayashi, T. & Su, T.-P. Compromising σ-1 Receptors at the Endoplasmic Reticulum
Render Cytotoxicity to Physiologically Relevant Concentrations of Dopamine in a Nuclear Factor-
κB/Bcl-2-Dependent Mechanism: Potential Relevance to Parkinson’s Disease. J. Pharmacol. Exp.
Ther. (2012) 341, 663671.
62. Hetz, C. & Mollereau, B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative
diseases. Nat. Rev. Neurosci. (2014) 15, 233249.
Science Reviews - Biology, 2023, 2(2), 1 - 20 Milena Batalla
63. Pal, A. et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxi
dant response elements. Eur. J. Pharmacol. (2012) 682, 1220.
64. Halliday, M. & Mallucci, G. R. Targeting the unfolded protein response in neurodegeneration: A
new approach to therapy. Neuropharmacology (2014) 76, 169174.
65. Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and
synapse formation in mice. Nat. Cell Biol. (2009) 11, 958966.
66. Chaturvedi, R. K. & Flint Beal, M. Mitochondrial Diseases of the Brain. Free Radic. Biol. Med.
(2013) 63, 129.
67. Schon, E. A. & Area-Gomez, E. Mitochondria-associated ER membranes in Alzheimer disease.
Mol. Cell. Neurosci. (2013) 55, 2636.
68. Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: Lipids and
beyond. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids (2014) 1841, 595609.
69. Rizzuto, R. et al. Ca2+ transfer from the ER to mitochondria: When, how and why. Biochim.
Biophys. Acta BBA - Bioenerg. (2009) 1787, 13421351.
70. Tchedre, K. T. & Yorio, T. σ-1 Receptors Protect RGC-5 Cells from Apoptosis by Regulating Int
racellular Calcium, Bax Levels, and Caspase-3 Activation. Investig. Opthalmology Vis. Sci. (2008)
49, 2577.
71. Smiraglia, D., Kulawiec, M., Bistulfi, G. L., Ghoshal, S. & Singh, K. K. A novel role for mitochondria
in regulating epigenetic modifications in the nucleus. Cancer Biol. Ther. (2008) 7, 11821190.
72. Hedskog L, Pinho CM, Filadi R, Ronnback A, Hertwig L, Wiehager B, et al. Modulation of the
endoplasmic reticulum-mitochondria interface in AD and related models. Proc Natl Acad Sci U S A.
73. Jansen KL, Faull RL, Storey P, Leslie RA. Loss of sigma binding sites in the CA1 area of the anterior
hippocampus in AD correlates with CA1 pyramidal cell loss. Brain Res. (1993) 623: 299e302.
74. Mishina M, Ohyama M, Ishii K, Kitamura S, Kimura Y, Oda K, et al. Low density of s1 receptors
in early AD. Ann Nucl Med. (2008); 22:151e156.
75. Iwamoto, M., Nakamura, Y., Takemura, M., Hisaoka-Nakashima, K. & Morioka, N. TLR4-TAK1-
p38 MAPK pathway and HDAC6 regulate the expression of sigma-1 receptors in rat primary cultured
microglia. J. Pharmacol. Sci. (2020) 144, 2329.
76. Mishina M, Ishiwata K, Ishii K, Kitamura S, Kimura Y, Kawamura K, et al. Function of s1 recep
tors in PD. Acta Neurol Scand. (2005)112:103e107.
77. Pal A, Fontanilla D, Gopalakrishnan A, Chae YK, Markley JL, Ruoho AE. The sigma-1 receptor
protects against cellular oxidative stress and activates antioxidant response elements. Eur J
Pharmacol. (2012) 682:12e20.
78. Dominique Fontanilla et al. The Hallucinogen N,N-Dimethyltryptamine (DMT) Is an Endogenous
Sigma-1 Receptor Regulator. Science; (2009) 323 (5916): 934937.
79. Carbonaro, T. M. & Gatch, M. B. Neuropharmacology of N,N-dimethyltryptamine. Brain Res.
Bull. (2016) 126, 7488.
Milena Batalla Science Reviews - Biology, 2023, 2(2), 1 - 20
80. Wallach, J. V. Endogenous hallucinogens as ligands of the trace amine receptors: A possible role
in sensory perception. Med. Hypotheses (2009) 72, 9194.
81. Barker, S. A., Monti, J. A. & Christian, S. T. N,N-Dimethyltryptamine: An Endogenous Halluci
nogen. in International Review of Neurobiology Elsevier (1981) vol. 22 83110.
82. Wyatt, R. J., Saavedra, J. M. & Axelrod, J. A Dimethyltryptamine-Forming Enzyme in Human
Blood. Am. J. Psychiatry (1973) 130, 754760.
83. Mandell, A. J. & Morgan, M. Indole(ethyl)amine N-Methyltransferase in Human Brain. Nature.
New Biol. (1971) 230, 8587.
84. Mavlyutov, T. A. et al. Development of the sigma-1 receptor in C-terminals of motoneurons and
colocalization with the N,N′-dimethyltryptamine forming enzyme, indole-N-methyl transferase.
Neuroscience (2012) 206, 6068.
85. Thompson, M. A. & Weinshilboum, R. M. Rabbit Lung Indolethylamine N-Methyltransferase. J.
Biol. Chem. (1998) 273, 3450234510.
86. Morgan, M. & Mandell, A. J. Indole(ethyl)amine N -Methyltransferase in the Brain. Science
(1969) 165, 492493.
87. Nichols, D. E. N,N -dimethyltryptamine and the pineal gland: Separating fact from myth. J.
Psychopharmacol. (Oxf.) (2018) 32, 3036.
88. Jiménez, J. H. & Bouso, J. C. Significance of mammalian N, N-dimethyltryptamine (DMT): A 60-
year-old debate. J. Psychopharmacol. (Oxf.) (2022) 36, 905919.
89. Mavlyutov, T. A. et al. Development of the sigma-1 receptor in C-terminals of motoneurons and
colocalization with the N,N′-dimethyltryptamine forming enzyme, indole-N-methyl transferase.
Neuroscience (2012) 206, 6068.
90. Vitale, A. A. et al. In Vivo Long-Term Kinetics of Radiolabeled N , N -Dimethyltryptamine and
Tryptamine. J. Nucl. Med. (2011) 52, 970977.
91. Frecska, E., Szabo, A., Winkelman, M. J., Luna, L. E. & McKenna, D. J. A possibly sigma-1 recep
tor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. J. Neural
Transm. (2013) 120, 12951303.
92. Cozzi, N. V. et al. Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate
behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J. Neural
Transm. (2009) 116, 15911599.
93. B R Sitaram, L Lockett, R Talomsin, G L Blackman, W R McLeod. In vivo metabolism of 5-me
thoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem Pharmacol; (1987)
36 (9):1509-12.
94. Ryskamp, D. A., Korban, S., Zhemkov, V., Kraskovskaya, N. & Bezprozvanny, I. Neuronal Sigma-
1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front.
Neurosci. (2019) 13, 862.
95. Kourrich, S., Su, T.-P., Fujimoto, M. & Bonci, A. The sigma-1 receptor: roles in neuronal plasticty
and disease. Trends Neurosci. (2012) 35, 762771.
96. Ruscher, K. et al. The sigma-1 receptor enhances brain plasticity and functional recovery after
experimental stroke. Brain (2011) 134, 732746.
Science Reviews - Biology, 2023, 2(2), 1 - 20 Milena Batalla
97. Szabo, A., Kovacs, A., Frecska, E. & Rajnavolgyi, E. Psychedelic N,N-Dimethyltryptamine and 5-
Methoxy-N,N-Dimethyltryptamine Modulate Innate and Adaptive Inflammatory Responses through
the Sigma-1 Receptor of Human Monocyte-Derived Dendritic Cells. PLoS ONE (2014) 9, e106533.
98. Osório, F. de L. et al. Antidepressant effects of a single dose of ayahuasca in patients with recur
rent depression: a preliminary report. Rev. Bras. Psiquiatr. (2015) 37, 1320.
99. Uthaug, M. V. et al. A placebo-controlled study of the effects of ayahuasca, set and setting on
mental health of participants in ayahuasca group retreats. Psychopharmacology (Berl.) (2021) 238,
100. Morales-Garcia, J. A. et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea
ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl. Psychiatry (2020) 10, 331.
101. Weil AT, Davis W. Bufo alvarius: a potent hallucinogen of animal origin. J Ethnopharmacol
(1994) 41:18.
102. Fiona G. Sleight, Steven Jay Lynn, Richard E. Mattson, Charlie W. McDonald. A novel ego
dissolution scale: A construct validation study. Consciousness and Cognition (2023) 109, 103474.
103. S. F. Cooke and T. V. P. Bliss. Plasticity in the human central nervous system. Brain, (2006) 129,
104. Ruscher, K. et al. The sigma-1 receptor enhances brain plasticity and functional recovery after
experimental stroke. Brain (2011) 134, 732746.
105. Tsai, S.-Y. et al. Sigma-1 receptors regulate hippocampal dendritic spine formation via a free ra
dical-sensitive mechanism involving Rac1·GTP pathway. Proc. Natl. Acad. Sci. (2009) 106, 22468
106. Endris, V. et al. The novel Rho-GTPase activating gene MEGAP / srGAP3 has a putative role in
severe mental retardation. Proc. Natl. Acad. Sci. (2002) 99, 1175411759.
107. Mueller, B. H. et al. Sigma-1 receptor stimulation attenuates calcium influx through activated L-
type Voltage Gated Calcium Channels in purified retinal ganglion cells. Exp. Eye Res. (2013) 107, 21
108. Tchedre, K. T. & Yorio, T. σ-1 Receptors Protect RGC-5 Cells from Apoptosis by Regulating
Intracellular Calcium, Bax Levels, and Caspase-3 Activation. Investig. Opthalmology Vis. Sci. (2008)
49, 2577.
109. Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type
experiences having substantial and sustained personal meaning and spiritual significance. Psycho
pharmacology (Berl.) (2006) 187, 26883 discussion 28492.
110. Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B,
Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH,
Copeland WC, Tice RR, Balshaw DM, Tyson FL. Mitochondria, energetics, epigenetics, and cellular
responses to stress. Environ Health Perspect (2014) 122:12711278.
111. Kourrich, S., Su, T.-P., Fujimoto, M. & Bonci, A. The sigma-1 receptor: roles in neuronal plastici
ty and disease. Trends Neurosci. (2012) 35, 762771.
Milena Batalla Science Reviews - Biology, 2023, 2(2), 1 - 20
112. Thomas Misgeld and Thomas L. Schwarz. Mitostasis in neurons: Maintaining mitochondria in
an extended cellular architecture. Neuron. (2017) 96(3): 651666.
113. Teresa E. Daniels, Elizabeth M. Olsen and Audrey R. Tyrka. Stress and Psychiatric Disorders:
The Role of mitochondria. The Annual Review of Clinical Psychology (2020) 16:16586.
114. Bertogliat, M. J., Morris-Blanco, K. C. & Vemuganti, R. Epigenetic mechanisms of
neurodegenerative diseases and acute brain injury. Neurochem. Int. (2020) 133, 104642.
115. Feinberg, A. P. Epigenetics at the Epicenter of Modern Medicine. JAMA (2008) 299, 1345.
116. Chandra, D. & Singh, K. K. Genetic insights into OXPHOS defect and its role in cancer. Biochim.
Biophys. Acta BBA - Bioenerg. (2011) 1807, 620625.
117. Szulwach, K. E. & Jin, P. Integrating DNA methylation dynamics into a framework for under
standing epigenetic codes: Prospects & Overviews. BioEssays (2014) 36, 107117.
118. Kriaucionis, S. & Heintz, N. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in
Purkinje Neurons and the Brain. Science (2009) 324, 929930.
119. Tahiliani, M. et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian
DNA by MLL Partner TET1. Science (2009) 324, 930935.
120. Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G. & Taylor, S. M. DNA methyltransferase
1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl.
Acad. Sci. (2011) 108, 36303635.
121. Barile, M., Brizio, C., Valenti, D., De Virgilio, C. & Passarella, S. The riboflavin/FAD cycle in rat
liver mitochondria: Riboflavin/FAD cycle in RLM. Eur. J. Biochem. (2000) 267, 48884900.
122. Berkich, D. A., Xu, Y., LaNoue, K. F., Gruetter, R. & Hutson, S. M. Evaluation of brain
mitochondrial glutamate andalpha-ketoglutarate transport under physiologic conditions. J.
Neurosci. Res. (2005) 79, 106113.
123. Gibson, G. E., Starkov, A., Blass, J. P., Ratan, R. R. & Beal, M. F. Cause and consequence: Mito
chondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavio
ral abnormalities in age-associated neurodegenerative diseases. Biochim. Biophys. Acta BBA - Mol.
Basis Dis. (2010) 1802, 122134.
124. Singh, K. Mitochondria damage checkpoint in apoptosis and genome stability. FEMS Yeast Res.
(2004) 5, 127132.
125. Balinang, J. The Regulation of Mitochondrial DNMT1 During Oxidative Stress.
Theses/Dissertations (2012).
126. Dostal, V. & Churchill, M. E. A. Cytosine methylation of mitochondrial DNA at CpG sequences
impacts transcription factor A DNA binding and transcription. Biochim. Biophys. Acta BBA - Gene
Regul. Mech. (2019) 1862, 598607.
127. Van der Wijst, M. G. P. & Rots, M. G. Mitochondrial epigenetics: an overlooked layer of
regulation? Trends Genet. (2015) 31, 353356.
Science Reviews - Biology, 2023, 2(2), 1 - 20 Milena Batalla
128. Michela Fagiolini, Catherine L Jensen and Frances A Champagne. Epigenetic influences on
brain development and plasticity. Current Opinion in Neurobiology (2009), 19:207212.
129. Ali Jawaid, Martin Roszkowski, Isabelle M. Mansuy. Transgenerational Epigenetics of Traumatic
Stress. Progress in Molecular Biology and Translational Science (2018) 1-20.
130. Dora L. Costaa, Noelle Yetterb, and Heather DeSomerb. Intergenerational transmission of
paternal trauma among US Civil War ex-POWs. PNAS (2018) 115, 44, 1121511220.
131. Natan P.F. Kellermann. Epigenetic Transmission of Holocaust Trauma: Can Nightmares Be
Inherited? Isr J Psychiatry Relat Sci (2013) 50, 1.
132. Yehuda, R. & Bierer, L. M. The relevance of epigenetics to PTSD: Implications for the DSM-V:
Epigenetics and PTSD: Implications for the DSM-V. J. Trauma. Stress (2009) 22, 427434.
133. Pérez-Mediavilla, A. & Zamarbide, M. Maternal imprinting, mitochondrial DNA, nuclear DNA
and Alzheimer’s disease. Explor. Neuroprotective Ther. (2021) 1, 121126.
134. Bai, Q. & Burton, E. A. Zebrafish models of Tauopathy. Biochim. Biophys. Acta BBA - Mol. Ba
sis Dis. (2011) 1812, 353363.
135. Das, S. & Rajanikant, G. K. Huntington disease: Can a zebrafish trail leave more than a ripple?
Neurosci. Biobehav. Rev. (2014) 45, 258261.
136. Laird, A. S., Mackovski, N., Rinkwitz, S., Becker, T. S. & Giacomotto, J. Tissue-specific models of
spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult
stages. Hum. Mol. Genet. (2016) 25, 17281738.
137. Crouzier, L. et al. Sigma-1 Receptor Is Critical for Mitochondrial Activity and Unfolded Protein
Response in Larval Zebrafish. Int. J. Mol. Sci. (2021) 22, 11049.
138. Goguadze, N., Zhuravliova, E., Morin, D., Mikeladze, D. & Maurice, T. Sigma-1 Receptor Ago
nists Induce Oxidative Stress in Mitochondria and Enhance Complex I Activity in Physiological
Condition but Protect Against Pathological Oxidative Stress. Neurotox. Res. (2019) 35, 118.
139. Batalla, M. Therapeutic uses of all-natural 5-meo-dmt enrichment from glandular secretion of
Bufo alvarius toad from the Sonoran Desert. Patent application number (2022) US63/415407.
140. Yaden, Andrew B. Newberg. The Varieties of Spiritual Experience: 21st Century Research and
Perspectives. Chapter 12, Mystical Experiences: Unity and Ego-Dissolution. (2022) Pages 224
141. Reckweg, J. T. et al. The clinical pharmacology and potential therapeutic applications of 5
methoxyN,Ndimethyltryptamine (5MeODMT). J. Neurochem. (2022) 162, 128146.
142. Use of Benefit Enhancement Strategies among 5-Methoxy-N,N-Dimethyltryptamine (5-MeO-
DMT) Users: Associations with Mystical, Challenging, and Enduring Effects.
143. Reckweg, J. et al. A Phase 1, Dose-Ranging Study to Assess Safety and Psychoactive Effects of a
Vaporized 5-Methoxy-N, N-Dimethyltryptamine Formulation (GH001) in Healthy Volunteers. Front.
Pharmacol. (2021) 12, 760671.
Milena Batalla Science Reviews - Biology, 2023, 2(2), 1 - 20
144. Moylan, S., Maes, M., Wray, N. R. & Berk, M. The neuroprogressive nature of major depressive
disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol. Psychia
try (2013) 18, 595606.
145. Konradi, C. et al. Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder. Arch.
Gen. Psychiatry (2004) 61, 300.
146. Fattal, O., Link, J., Quinn, K., Cohen, B. H. & Franco, K. Psychiatric Comorbidity in 36 Adults
with Mitochondrial Cytopathies. CNS Spectr. (2007) 12, 429438.
147. Hollis, F. et al. Mitochondrial function in the brain links anxiety with social subordination. Proc.
Natl. Acad. Sci. (2015) 112, 1548615491.
148. Zuccoli, G. S., Saia-Cereda, V. M., Nascimento, J. M. & Martins-de-Souza, D. The Energy
Metabolism Dysfunction in Psychiatric Disorders Postmortem Brains: Focus on Proteomic Evidence.
Front. Neurosci. (2017) 11, 493.
149. Tsai, S.-Y. A. et al. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by
recruiting chromatin-remodeling factors at the nuclear envelope. Proc. Natl. Acad. Sci. (2015) 112.
150. Sha, S. et al. Sigma-1 Receptor Knockout Impairs Neurogenesis in Dentate Gyrus of Adult
Hippocampus Via Down-Regulation of NMDA Receptors. CNS Neurosci. Ther. (2013) 19, 705713.
151. Uthaug, M. V. et al. A single inhalation of vapor from dried toad secretion containing 5-me
thoxy-N,N-dimethyltryptamine (5-MeO-DMT) in a naturalistic setting is related to sustained enhan
cement of satisfaction with life, mindfulness-related capacities, and a decrement of psychopatholo
gical symptoms. Psychopharmacology (Berl.) (2019) 236, 26532666.
152. Davis, A. K., Barsuglia, J. P., Lancelotta, R., Grant, R. M. & Renn, E. The epidemiology of 5-
methoxy- N, N -dimethyltryptamine (5-MeO-DMT) use: Benefits, consequences, patterns of use,
subjective effects, and reasons for consumption. J. Psychopharmacol. (Oxf.) (2018) 32, 779792.
153. Chiamulera, C. et al. Reinforcing and locomotor stimulant effects of cocaine are absent in
mGluR5 null mutant mice. Nat. Neurosci. (2001) 4, 873874.
154. Bird, M. K., Kirchhoff, J., Djouma, E. & Lawrence, A. J. Metabotropic glutamate 5 receptors
regulate sensitivity to ethanol in mice. Int. J. Neuropsychopharmacol. (2008) 11.
155. Barsuglia, J. P. et al. A case report SPECT study and theoretical rationale for the sequential
administration of ibogaine and 5-MeO-DMT in the treatment of alcohol use disorder. in Progress in
Brain Research (2018) vol. 242, 121158.
156. Inserra, A. Hypothesis: The Psychedelic Ayahuasca Heals Traumatic Memories via a Sigma 1
Receptor-Mediated Epigenetic-Mnemonic Process. Front. Pharmacol. (2018) 9, 330.
157. Davis, A. K., Averill, L. A., Sepeda, N. D., Barsuglia, J. P. & Amoroso, T. Psychedelic Treatment
for Trauma-Related Psychological and Cognitive Impairment Among US Special Operations Forces
Veterans. Chronic Stress (2020) 4, 247054702093956.
158. Kourrich, S., Su, T.-P., Fujimoto, M. & Bonci, A. The sigma-1 receptor: roles in neuronal plasticity
and disease. Trends Neurosci. (2012) 35, 762771.
Science Reviews - Biology, 2023, 2(2), 1 - 20 Milena Batalla
159. Ben-Shachar, D. & Karry, R. Neuroanatomical Pattern of Mitochondrial Complex I Pathology
Varies between Schizophrenia, Bipolar Disorder and Major Depression. PLoS ONE (2008) 3, e3676.
160. Tsai, S.-Y. A., Pokrass, M. J., Klauer, N. R., De Credico, N. E. & Su, T.-P. Sigma-1 receptor
chaperones in neurodegenerative and psychiatric disorders. Expert Opin. Ther. Targets (2014) 116.