67. Ueda, Y., Moore, S. T., & Hashino, E. (2021). Directed Differentiation of Human Pluripotent Stem
Cells into Inner Ear Organoids.
68. Mori, K., Nagao, H., & Yoshihara, Y. (1999). The olfactory bulb: coding and processing of odor
molecule information. Science, 286(5440), 711-715.
69. Boesveldt, S., Postma, E. M., Boak, D., Welge-Luessen, A., Schöpf, V., Mainland, J. D., ... & Duffy,
V. B. (2017). Anosmia—a clinical review. Chemical senses, 42(7), 513-523.
70. Bricker, R. L., Bhaskar, U., Titone, R., Carless, M. A., & Barberi, T. (2022). A molecular analysis of
neural olfactory placode differentiation in human pluripotent stem cells. Stem Cells and
Development, (ja).
71. Ramezanpour, M., Bolt, H., Hon, K., Shaghayegh, G., Rastin, H., Fenix, K. A., ... & Vreugde, S.
(2022). Characterization of human nasal organoids from chronic rhinosinusitis patients. Biology
open, 11(8), bio059267.
72. Ren, W., Wang, L., Zhang, X., Feng, X., Zhuang, L., Jiang, N., ... & Yu, Y. (2021). Expansion of
murine and human olfactory epithelium/mucosa colonies and generation of mature olfactory
sensory neurons under chemically defined conditions. Theranostics, 11(2), 684.
73. Peterson, J., Lin, B., Barrios-Camacho, C. M., Herrick, D. B., Holbrook, E. H., Jang, W., ... & Schwob,
J. E. (2019). Activating a reserve neural stem cell population in vitro enables engraftment and
multipotency after transplantation. Stem Cell Reports, 12(4), 680-695.
74. Leeson, H. C., Hunter, Z., Chaggar, H. K., Mackay-Sim, A., & Wolvetang, E. J. (2021).
Reprogramming of human olfactory neurosphere-derived cells from olfactory mucosal biopsies of
a control cohort. Stem Cell Research, 56, 102527.
75. Barnett, S. C., & Chang, L. (2004). Olfactory ensheathing cells and CNS repair: going solo or in need
of a friend?. Trends in neurosciences, 27(1), 54-60.
76. Schmitt, C., & Hockwin, O. (1990). The mechanisms of cataract formation. Journal of inherited
metabolic disease, 13(4), 501- 508.
77. Lyu, D., Zhang, L., Qin, Z., Ni, S., Li, J., Lu, B., ... & Yao, K. (2021). Modeling congenital cataract in
vitro using patient- specific induced pluripotent stem cells. NPJ Regenerative medicine, 6(1), 1-14.
78. Murphy, P., Kabir, M. H., Srivastava, T., Mason, M. E., Dewi, C. U., Lim, S., ... & O'Connor, M. D.
(2018). Light-focusing human micro-lenses generated from pluripotent stem cells model lens
development and drug-induced cataract in vitro. Development, 145(1), dev155838.
79. Fabre, M., Mateo, L., Lamaa, D., Baillif, S., Pagès, G., Demange, L., ... & Benhida, R. (2022). Recent
Advances in Age-Related Macular Degeneration Therapies. Molecules, 27(16), 5089.
80. Surendran, H., Nandakumar, S., Reddy K, V. B., Stoddard, J., Upadhyay, P. K., McGill, T. J., & Pal,
R. (2021). Transplantation of retinal pigment epithelium and photoreceptors generated
concomitantly via small molecule-mediated differentiation rescues visual function in rodent
models of retinal degeneration. Stem cell research & therapy, 12(1), 1-17.
81. Sharma, R., Khristov, V., Rising, A., Jha, B. S., Dejene, R., Hotaling, N., ... & Bharti, K. (2019).
Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in
rodents and pigs. Science translational medicine, 11(475), eaat5580.
82. Lin, B., McLelland, B. T., Aramant, R. B., Thomas, B. B., Nistor, G., Keirstead, H. S., & Seiler, M. J.
(2020). Retina organoid transplants develop photoreceptors and improve visual function in RCS
rats with RPE dysfunction. Investigative ophthalmology & visual science, 61(11), 34-34.
83. Wu, H., Li, J., Mao, X., Li, G., Xie, L., & You, Z. (2018). Transplantation of rat embryonic stem cell-
derived retinal cells restores visual function in the Royal College of Surgeons rats. Documenta
Ophthalmologica, 137(2), 71-78.