1. Bourne, R., Steinmetz, J. D., Flaxman, S., Briant, P. S., Taylor, H. R., Resnikoff, S., ... & Tareque, M.
I. (2021). Trends in prevalence of blindness and distance and near vision impairment over 30 years:
an analysis for the Global Burden of Disease Study. The Lancet global health, 9(2), e130-e143.
2. Haile, L. M., Kamenov, K., Briant, P. S., Orji, A. U., Steinmetz, J. D., Abdoli, A., ... & Rao, C. R.
(2021). Hearing loss prevalence and years lived with disability, 19902019: findings from the Global
Burden of Disease Study 2019. The Lancet, 397(10278), 996-1009.
3. Desiato, V. M., Levy, D. A., Byun, Y. J., Nguyen, S. A., Soler, Z. M., & Schlosser, R. J. (2021). The
prevalence of olfactory dysfunction in the general population: a systematic review and meta-
analysis. American journal of rhinology & allergy, 35(2), 195-205.
4. Moein, S. T., Hashemian, S. M., Mansourafshar, B., KhorramTousi, A., Tabarsi, P., & Doty, R. L.
(2020, August). Smell dysfunction: a biomarker for COVID19. In International forum of allergy &
rhinology (Vol. 10, No. 8, pp. 944-950).
5. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell
maintenance throughout life. Cell, 132(4), 598-611.
6. Singh, V. K., Saini, A., Kalsan, M., Kumar, N., & Chandra, R. (2016). Describing the stem cell
potency: the various methods of functional assessment and in silico diagnostics. Frontiers in cell and
developmental biology, 4, 134.
7. Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R., & Francis-West, P. H. (2014). Larsen's human embryology.
Elsevier Health Sciences.
8. Schwartz, P. H., Brick, D. J., Nethercott, H. E., & Stover, A. E. (2011). Traditional human embryonic
stem cell culture. In Human Pluripotent Stem Cells (pp. 107-123). Humana Press.
9. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse
embryos. Nature, 292(5819), 154-156.
10. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., &
Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391),
11. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic
and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676.
12. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring
derived from fetal and adult mammalian cells. Nature, 385(6619), 810-813.
13. Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells
from fibroblast cultures. Nature protocols, 2(12), 3081-3089.
14. Zhu, Z., & Huangfu, D. (2013). Human pluripotent stem cells: an emerging model in
developmental biology. Development, 140(4), 705-717.
15. Irion, S., Zabierowski, S. E., & Tomishima, M. J. (2017). Bringing neural cell therapies to the clinic:
past and future strategies. Molecular Therapy-Methods & Clinical Development, 4, 72-82.
16. Song, C. G., Zhang, Y. Z., Wu, H. N., Cao, X. L., Guo, C. J., Li, Y. Q., ... & Han, H. (2018). Stem cells:
a promising candidate to treat neurological disorders. Neural Regeneration Research, 13(7), 1294.
17. Michiue, T., & Tsukano, K. (2022). Feedback Regulation of Signaling Pathways for Precise Pre-
Placodal Ectoderm Formation in Vertebrate Embryos. Journal of Developmental Biology, 10(3), 35.
18. Thawani, A., & Groves, A. K. (2020). Building the border: development of the chordate neural plate
border region and its derivatives. Frontiers in Physiology, 11, 608880.
19. Miesfeld, J. B., & Brown, N. L. (2019). Eye organogenesis: A hierarchical view of ocular
development. Current topics in developmental biology, 132, 351-393.
20. Fu, Q., Qin, Z., Jin, X., Zhang, L., Chen, Z., He, J., ... & Yao, K. (2017). Generation of functional
lentoid bodies from human induced pluripotent stem cells derived from urinary cells. Investigative
Ophthalmology & Visual Science, 58(1), 517-527.
21. Dewi, C. U., Mason, M., Cohen-Hyams, T., Killingsworth, M. C., Harman, D. G.,
Gnanasambandapillai, V., ... & O'Connor, M. D. (2021). A simplified method for producing human
lens epithelial cells and light-focusing micro-lenses from pluripotent stem cells. Experimental Eye
Research, 202, 108317.
22. Qiu, X., Yang, J., Liu, T., Jiang, Y., Le, Q., & Lu, Y. (2012). Efficient generation of lens progenitor
cells from cataract patientspecific induced pluripotent stem cells. PLoS One, 7(3), e32612.
23. Li, D., Qiu, X., Yang, J., Liu, T., Luo, Y., & Lu, Y. (2016). Generation of Human Lens EpithelialLike
Cells From PatientSpecific Induced Pluripotent Stem Cells. Journal of Cellular Physiology, 231(12),
24. Yang, C., Yang, Y., Brennan, L., Bouhassira, E. E., Kantorow, M., & Cvekl, A. (2010). Efficient
generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in
chemically defined conditions. The FASEB journal, 24(9), 3274-3283.
25. Hiramatsu, N., Yamamoto, N., Kato, Y., Nagai, N., Isogai, S., & Imaizumi, K. (2022). Formation of
three-dimensional cell aggregates expressing lens-specific proteins in various cultures of human
iris-derived tissue cells and iPS cells. Experimental and Therapeutic Medicine, 24(2), 1-11.
26. Anand, T., Talluri, T. R., Kumar, D., Garrels, W., Mukherjee, A., Debowski, K., ... & Kues, W. A.
(2016). Differentiation of induced pluripotent stem cells to lentoid bodies expressing a lens cell-
specific fluorescent reporter. PLoS One, 11(6), e0157570.
27. Mengarelli, I., & Barberi, T. (2013). Derivation of multiple cranial tissues and isolation of lens
epithelium-like cells from human embryonic stem cells. Stem cells translational medicine, 2(2), 94-
28. Mellough, C. B., Sernagor, E., Moreno-Gimeno, I., Steel, D. H., & Lako, M. (2012). Efficient stage-
specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem
cells, 30(4), 673-686.
29. Rashidi, H., Leong, Y. C., Venner, K., Pramod, H., Fei, Q. Z., Jones, O. J., ... & Sowden, J. C. (2022).
Generation of 3D retinal tissue from human pluripotent stem cells using a directed small molecule-
based serum-free microwell platform. Scientific reports, 12(1), 1-13.
30. Otsuka, Y., Imamura, K., Oishi, A., Kondo, T., Suga, M., Yada, Y., ... & Inoue, H. (2022). One-step
induction of photoreceptor-like cells from human iPSCs by delivering transcription
factors. Iscience, 25(4), 103987.
31. Eintracht, J., Harding, P., Cunha, D. L., & Moosajee, M. (2022). Efficient embryoid-based method
to improve generation of optic vesicles from human induced pluripotent stem
cells. F1000Research, 11(324), 324.
32. Gill, K. P., Hung, S. S., Sharov, A., Lo, C. Y., Needham, K., Lidgerwood, G. E., ... & Wong, R. C.
(2016). Enriched retinal ganglion cells derived from human embryonic stem cells. Scientific
reports, 6(1), 1-11.
33. Jung, Y. H., Phillips, M. J., Lee, J., Xie, R., Ludwig, A. L., Chen, G., ... & Ma, Z. (2018). 3D
microstructured scaffolds to support photoreceptor polarization and maturation. Advanced
materials, 30(39), 1803550.
34. Zhu, J., Reynolds, J., Garcia, T., Cifuentes, H., Chew, S., Zeng, X., & Lamba, D. A. (2018). Generation
of transplantable retinal photoreceptors from a current good manufacturing practice-
manufactured human induced pluripotent stem cell line. Stem cells translational medicine, 7(2), 210-
35. Kuwahara, A., Nakano, T., & Eiraku, M. (2017). Generation of a three-dimensional retinal tissue
from self-organizing human ESC culture. Organ Regeneration, 17-29.
36. Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., ... & Sasai, Y. (2012).
Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell stem
cell, 10(6), 771-785.
37. Reichman, S., Slembrouck, A., Gagliardi, G., Chaffiol, A., Terray, A., Nanteau, C., ... & Goureau, O.
(2017). Generation of storable retinal organoids and retinal pigmented epithelium from adherent
human iPS cells in xeno-free and feeder-free conditions. Stem cells, 35(5), 1176-1188.
38. Shrestha, R., Wen, Y. T., & Tsai, R. K. (2020). Effective differentiation and biological characterization
of retinal pigment epithelium derived from human induced pluripotent stem cells. Current Eye
Research, 45(9), 1155-1167.
39. Limnios, I. J., Chau, Y. Q., Skabo, S. J., Surrao, D. C., & O’Neill, H. C. (2021). Efficient differentiation
of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem cell
research & therapy, 12(1), 1-14.
40. Torrez, L. B., Perez, Y., Yang, J., Zur Nieden, N. I., Klassen, H., & Liew, C. G. (2012). Derivation of
neural progenitors and retinal pigment epithelium from common marmoset and human
pluripotent stem cells. Stem cells international, 2012.
41. Osakada, F., Ikeda, H., Sasai, Y., & Takahashi, M. (2009). Stepwise differentiation of pluripotent
stem cells into retinal cells. Nature protocols, 4(6), 811-824.
42. Buchholz, D. E., Pennington, B. O., Croze, R. H., Hinman, C. R., Coffey, P. J., & Clegg, D. O. (2013).
Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented
epithelium. Stem cells translational medicine, 2(5), 384-393.
43. Cieślar-Pobuda, A., Rafat, M., Knoflach, V., Skonieczna, M., Hudecki, A., Małecki, A., ... & Łos, M.
J. (2016). Human induced pluripotent stem cell differentiation and direct transdifferentiation into
corneal epithelial-like cells. Oncotarget, 7(27), 42314.
44. Abdalkader, R., & Kamei, K. I. (2022). An efficient simplified method for the generation of corneal
epithelial cells from human pluripotent stem cells. Human Cell, 1-14.
45. Chen, X., Wu, L., Li, Z., Dong, Y., Pei, X., Huang, Y., & Wang, L. (2018). Directed differentiation of
human corneal endothelial cells from human embryonic stem cells by using cell-conditioned
culture media. Investigative Ophthalmology & Visual Science, 59(7), 3028-3036.
46. Jia, L., Diao, Y., Fang, Y., Yang, K., Wang, L., & Huang, Y. (2022). Methodological study of directed
differentiation of pluripotent stem cells into corneal endothelial cells. Annals of Translational
Medicine, 10(8).
47. Chen, J., Ou, Q., Wang, Z., Liu, Y., Hu, S., Liu, Y., ... & Cui, H. P. (2021). Small-Molecule Induction
Promotes Corneal Endothelial Cell Differentiation From Human iPS Cells. Frontiers in
bioengineering and biotechnology, 9.
48. Song, Q., Yuan, S., An, Q., Chen, Y., Mao, F. F., Liu, Y., ... & Fan, G. (2016). Directed differentiation
of human embryonic stem cells to corneal endothelial cell-like cells: a transcriptomic
analysis. Experimental Eye Research, 151, 107-114.
49. de la Torre, R. M. G., Nieto-Nicolau, N., Morales-Pastor, A., & Casaroli-Marano, R. P. (2017,
December). Determination of the culture time point to induce corneal epithelial differentiation in
induced pluripotent stem cells. In Transplantation Proceedings (Vol. 49, No. 10, pp. 2292-2295).
50. Ahmad, S., Stewart, R., Yung, S., Kolli, S., Armstrong, L., Stojkovic, M., ... & Lako, M. (2007).
Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro
replication of the corneal epithelial stem cell niche. Stem cells, 25(5), 1145-1155.
51. Mikhailova, A., Ilmarinen, T., Uusitalo, H., & Skottman, H. (2014). Small-molecule induction
promotes corneal epithelial cell differentiation from human induced pluripotent stem cells. Stem
cell reports, 2(2), 219-231.
52. Zhang, C., Du, L., Pang, K., & Wu, X. (2017). Differentiation of human embryonic stem cells into
corneal epithelial progenitor cells under defined conditions. PLoS One, 12(8), e0183303.
53. Grönroos, P., Ilmarinen, T., & Skottman, H. (2021). Directed differentiation of human pluripotent
stem cells towards corneal endothelial-like cells under defined conditions. Cells, 10(2), 331.
54. Tian, Y. I., Zhang, X., Torrejon, K., Danias, J., Du, Y., & Xie, Y. (2020). A Biomimetic, Stem Cell
Derived In Vitro Ocular Outflow Model. Advanced biosystems, 4(9), 2000004.
55. Boutin, M. E., Hampton, C., Quinn, R., Ferrer, M., & Song, M. J. (2019). 3D engineering of ocular
tissues for disease modeling and drug testing. In Pluripotent Stem Cells in Eye Disease Therapy (pp.
171-193). Springer, Cham.
56. Isla-Magrané, H., Veiga, A., García-Arumí, J., & Duarri, A. (2021). Multiocular organoids from
human induced pluripotent stem cells displayed retinal, corneal, and retinal pigment epithelium
lineages. Stem cell research & therapy, 12(1), 1-17.
57. Wagner, E. L., & Shin, J. B. (2019). Mechanisms of hair cell damage and repair. Trends in
neurosciences, 42(6), 414-424.
58. Zine, A., Messat, Y., & Fritzsch, B. (2021). A human induced pluripotent stem cell-based modular
platform to challenge sensorineural hearing loss. Stem Cells, 39(6), 697-706.
59. Gunewardene, N., Bergen, N. V., Crombie, D., Needham, K., Dottori, M., & Nayagam, B. A. (2014).
Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron
replacement. BioResearch Open Access, 3(4), 162-175.
60. Gunewardene, N., Crombie, D., Dottori, M., & Nayagam, B. A. (2016). Innervation of cochlear hair
cells by human induced pluripotent stem cell-derived neurons in vitro. Stem cells
international, 2016.
61. Matsuoka, A. J., Morrissey, Z. D., Zhang, C., Homma, K., Belmadani, A., Miller, C. A., ... & Kessler,
J. A. (2017). Directed differentiation of human embryonic stem cells toward placode-derived spiral
ganglion-like sensory neurons. Stem cells translational medicine, 6(3), 923-936.
62. Ronaghi, M., Nasr, M., Ealy, M., Durruthy-Durruthy, R., Waldhaus, J., Diaz, G. H., ... & Heller, S.
(2014). Inner ear hair cell-like cells from human embryonic stem cells. Stem cells and
development, 23(11), 1275-1284.
63. Ohnishi, H., Skerleva, D., Kitajiri, S. I., Sakamoto, T., Yamamoto, N., Ito, J., & Nakagawa, T. (2015).
Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise
method. Neuroscience letters, 599, 49-54.
64. Koehler, K. R., Nie, J., Longworth-Mills, E., Liu, X. P., Lee, J., Holt, J. R., & Hashino, E. (2017).
Generation of inner ear organoids containing functional hair cells from human pluripotent stem
cells. Nature biotechnology, 35(6), 583-589.
65. Jeong, M., O’reilly, M., Kirkwood, N. K., Al-Aama, J., Lako, M., Kros, C. J., & Armstrong, L. (2018).
Generating inner ear organoids containing putative cochlear hair cells from human pluripotent
stem cells. Cell death & disease, 9(9), 1-13.
66. Moeinvaziri, F., Shojaei, A., Haghparast, N., Yakhkeshi, S., Nemati, S., Hassani, S. N., & Baharvand,
H. (2021). Towards maturation of human otic hair celllike cells in pluripotent stem cellderived
organoid transplants. Cell and Tissue Research, 386(2), 321-333.
67. Ueda, Y., Moore, S. T., & Hashino, E. (2021). Directed Differentiation of Human Pluripotent Stem
Cells into Inner Ear Organoids.
68. Mori, K., Nagao, H., & Yoshihara, Y. (1999). The olfactory bulb: coding and processing of odor
molecule information. Science, 286(5440), 711-715.
69. Boesveldt, S., Postma, E. M., Boak, D., Welge-Luessen, A., Schöpf, V., Mainland, J. D., ... & Duffy,
V. B. (2017). Anosmiaa clinical review. Chemical senses, 42(7), 513-523.
70. Bricker, R. L., Bhaskar, U., Titone, R., Carless, M. A., & Barberi, T. (2022). A molecular analysis of
neural olfactory placode differentiation in human pluripotent stem cells. Stem Cells and
Development, (ja).
71. Ramezanpour, M., Bolt, H., Hon, K., Shaghayegh, G., Rastin, H., Fenix, K. A., ... & Vreugde, S.
(2022). Characterization of human nasal organoids from chronic rhinosinusitis patients. Biology
open, 11(8), bio059267.
72. Ren, W., Wang, L., Zhang, X., Feng, X., Zhuang, L., Jiang, N., ... & Yu, Y. (2021). Expansion of
murine and human olfactory epithelium/mucosa colonies and generation of mature olfactory
sensory neurons under chemically defined conditions. Theranostics, 11(2), 684.
73. Peterson, J., Lin, B., Barrios-Camacho, C. M., Herrick, D. B., Holbrook, E. H., Jang, W., ... & Schwob,
J. E. (2019). Activating a reserve neural stem cell population in vitro enables engraftment and
multipotency after transplantation. Stem Cell Reports, 12(4), 680-695.
74. Leeson, H. C., Hunter, Z., Chaggar, H. K., Mackay-Sim, A., & Wolvetang, E. J. (2021).
Reprogramming of human olfactory neurosphere-derived cells from olfactory mucosal biopsies of
a control cohort. Stem Cell Research, 56, 102527.
75. Barnett, S. C., & Chang, L. (2004). Olfactory ensheathing cells and CNS repair: going solo or in need
of a friend?. Trends in neurosciences, 27(1), 54-60.
76. Schmitt, C., & Hockwin, O. (1990). The mechanisms of cataract formation. Journal of inherited
metabolic disease, 13(4), 501- 508.
77. Lyu, D., Zhang, L., Qin, Z., Ni, S., Li, J., Lu, B., ... & Yao, K. (2021). Modeling congenital cataract in
vitro using patient- specific induced pluripotent stem cells. NPJ Regenerative medicine, 6(1), 1-14.
78. Murphy, P., Kabir, M. H., Srivastava, T., Mason, M. E., Dewi, C. U., Lim, S., ... & O'Connor, M. D.
(2018). Light-focusing human micro-lenses generated from pluripotent stem cells model lens
development and drug-induced cataract in vitro. Development, 145(1), dev155838.
79. Fabre, M., Mateo, L., Lamaa, D., Baillif, S., Pagès, G., Demange, L., ... & Benhida, R. (2022). Recent
Advances in Age-Related Macular Degeneration Therapies. Molecules, 27(16), 5089.
80. Surendran, H., Nandakumar, S., Reddy K, V. B., Stoddard, J., Upadhyay, P. K., McGill, T. J., & Pal,
R. (2021). Transplantation of retinal pigment epithelium and photoreceptors generated
concomitantly via small molecule-mediated differentiation rescues visual function in rodent
models of retinal degeneration. Stem cell research & therapy, 12(1), 1-17.
81. Sharma, R., Khristov, V., Rising, A., Jha, B. S., Dejene, R., Hotaling, N., ... & Bharti, K. (2019).
Clinical-grade stem cellderived retinal pigment epithelium patch rescues retinal degeneration in
rodents and pigs. Science translational medicine, 11(475), eaat5580.
82. Lin, B., McLelland, B. T., Aramant, R. B., Thomas, B. B., Nistor, G., Keirstead, H. S., & Seiler, M. J.
(2020). Retina organoid transplants develop photoreceptors and improve visual function in RCS
rats with RPE dysfunction. Investigative ophthalmology & visual science, 61(11), 34-34.
83. Wu, H., Li, J., Mao, X., Li, G., Xie, L., & You, Z. (2018). Transplantation of rat embryonic stem cell-
derived retinal cells restores visual function in the Royal College of Surgeons rats. Documenta
Ophthalmologica, 137(2), 71-78.
84. Duarri, A., Rodríguez-Bocanegra, E., Martínez-Navarrete, G., Biarnés, M., García, M., Ferraro, L.
L., ... & Monés, J. (2021). Transplantation of human induced pluripotent stem cell-derived retinal
pigment epithelium in a swine model of geographic atrophy. International journal of molecular
sciences, 22(19), 10497.
85. Aoki, H., Hara, A., Niwa, M., Motohashi, T., Suzuki, T., & Kunisada, T. (2008). Transplantation of
cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo
regeneration of retinal ganglion-like cells. Graefe's Archive for Clinical and Experimental
Ophthalmology, 246(2), 255-265.
86. Carr, A. J., Vugler, A. A., Hikita, S. T., Lawrence, J. M., Gias, C., Chen, L. L., ... & Coffey, P. J. (2009).
Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the
retinal dystrophic rat. PloS one, 4(12), e8152.
87. Li, Y., Tsai, Y. T., Hsu, C. W., Erol, D., Yang, J., Wu, W. H., ... & Tsang, S. H. (2012). Long-term
safety and efficacy of human- induced pluripotent stem cell (iPS) grafts in a preclinical model of
retinitis pigmentosa. Molecular medicine, 18(9), 1312-1319.
88. Yang, J. M., Chung, S., Yun, K., Kim, B., So, S., Kang, S., ... & Lee, J. Y. (2021). Long-term effects of
human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout
rats. Experimental & molecular medicine, 53(4), 631-642.
89. Salas, A., Duarri, A., Fontrodona, L., Ramírez, D. M., Badia, A., Isla-Magrané, H., ... & García-
Arumí, J. (2021). Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss
in a rat model of retinal degeneration. Molecular Therapy-Methods & Clinical Development, 20, 688-
90. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., ... & Takahashi, M.
(2017). Autologous induced stem- cellderived retinal cells for macular degeneration. New England
Journal of Medicine, 376(11), 1038-1046.
91. Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., ... & Lanza, R.
(2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-
related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label
phase 1/2 studies. The Lancet, 385(9967), 509-516.
92. Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., ... & Lanza, R.
(2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-
related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label
phase 1/2 studies. The Lancet, 385(9967), 509-516.
93. Santodomingo-Rubido, J., Carracedo, G., Suzaki, A., Villa-Collar, C., Vincent, S. J., & Wolffsohn, J.
S. (2022). Keratoconus: An updated review. Contact Lens and Anterior Eye, 101559.
94. Zhang, K., Pang, K., & Wu, X. (2014). Isolation and transplantation of corneal endothelial celllike
cells derived from in-vitro-differentiated human embryonic stem cells. Stem cells and
development, 23(12), 1340-1354.
95. Hatou, S., Sayano, T., Higa, K., Inagaki, E., Okano, Y., Sato, Y., ... & Shimmura, S. (2021).
Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema
model. Stem Cell Research, 55, 102497.
96. Chen, J., Hong, F., Zhang, C., Li, L., Wang, C., Shi, H., ... & Wang, J. (2018). Differentiation and
transplantation of human induced pluripotent stem cell-derived otic epithelial progenitors in
mouse cochlea. Stem cell research & therapy, 9(1), 1-15.
97. Chen, W., Jongkamonwiwat, N., Abbas, L., Eshtan, S. J., Johnson, S. L., Kuhn, S., ... & Rivolta, M.
N. (2012). Restoration of auditory evoked responses by human ES-cell-derived otic
progenitors. Nature, 490(7419), 278-282.
98. Lopez-Juarez, A., Lahlou, H., Ripoll, C., Cazals, Y., Brezun, J. M., Wang, Q., ... & Zine, A. (2019).
Engraftment of human stem cell-derived otic progenitors in the damaged cochlea. Molecular
Therapy, 27(6), 1101-1113.
99. Lee, M. Y., Hackelberg, S., Green, K. L., Lunghamer, K. G., Kurioka, T., Loomis, B. R., ... & Raphael,
Y. (2017). Survival of human embryonic stem cells implanted in the guinea pig auditory
epithelium. Scientific Reports, 7(1), 1-12.
100. Takeda, H., Dondzillo, A., Randall, J. A., & Gubbels, S. P. (2021) Selective ablation of cochlear hair
cells promotes engraftment of human embryonic stem cell-derived progenitors in the mouse organ
of Corti. Stem cell research & therapy, 12(1), 1-14.
101. Tarozzo, G., Peretto, P., & Fasolo, A. (1995). Cell migration from the olfactory placode and the
ontogeny of the neuroendocrine compartments. Zoological science, 12(4), 367-383.
102. Kurtenbach, S., Goss, G. M., Goncalves, S., Choi, R., Hare, J. M., Chaudhari, N., & Goldstein, B. J.
(2019). Cell-based therapy restores olfactory function in an inducible model of hyposmia. Stem cell
reports, 12(6), 1354-1365.
103. Galeano, C., Qiu, Z., Mishra, A., Farnsworth, S. L., Hemmi, J. J., Moreira, A., ... & Hornsby, P. J.
(2018). The route by which intranasally delivered stem cells enter the central nervous system. Cell
Transplantation, 27(3), 501-514.
104. Li, Y. H., Feng, L., Zhang, G. X., & Ma, C. G. (2015). Intranasal delivery of stem cells as therapy for
central nervous system disease. Experimental and molecular pathology, 98(2), 145-151.
105. Losurdo, M., Pedrazzoli, M., D'Agostino, C., Elia, C. A., Massenzio, F., Lonati, E., ... & Coco, S.
(2020). Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts
immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem cells
translational medicine, 9(9), 1068-1084.