19. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice
following sustained dosing of extracellular vesicles derived from HEK293T cells. J.Extracell. Vesicles
6, 1324730 (2017). http://dx.doi.org/10.1080/20013078.2017.1324730
20. Wiklander, O. P. B., Brennan, M. Á., Lötvall, J., Breakefield, X. O. & El Andaloussi, S. Advances in
therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, (2019).
21. Yao, Y., Fu, C., Zhou, L., Mi, Q.-S. & Jiang, A. DC-Derived Exosomes for Cancer Immunotherapy.
Cancers 13, 3667 (2021). http://dx.doi.org/10.3390/cancers13153667
22. Canning, P., Alwan, A., Khalil, F., Zhang, Y. &Opara, E. C. Perspectives and Challenges on the
Potential Use of Exosomes in Bioartificial Pancreas Engineering. Ann. Biomed. Eng. 50, 1177–1186
(2022). http://dx.doi.org/10.1002/bit.27641
23. van Niel, G., D’Angelo, G. &Raposo, G. Shedding light on the cell biology of extracellular vesicles.
Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
24. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined
therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).
http://dx.doi.org/10.1016/j.ymthe.2021.01.020
25. Mathivanan, S. et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from
the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell.
Proteomics 9, 197–208 (2010).
26. Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-
induced endothelial cell activation. Cancer Res. 70, 1668–1678 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-09-2470
27. Claridge, B., Lozano, J., Poh, Q. H. & Greening, D. W. Development of extracellular vesicle
therapeutics: Challenges, considerations, and opportunities. Front. Cell Dev. Biol. 9, 734720 (2021).
http://dx.doi.org/10.3389/fcell.2021.734720
28. Parada, N., Romero-Trujillo, A., Georges, N. & Alcayaga-Miranda, F. Camouflage strategies for
therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 31, 61–74 (2021).
http://dx.doi.org/10.1016/j.jare.2021.01.001
29. Gupta, D. et al. Amelioration of systemic inflammation via the display of two different decoy
protein receptors on extracellular vesicles. Nat. Biomed. Eng. 5, 1084–1098 (2021).
http://dx.doi.org/10.1038/s41551-021-00792-z
30. Lewis, N. D. et al. Exosome Surface Display of IL12 Results in Tumor-Retained Pharmacology with
Superior Potency and Limited Systemic Exposure Compared with Recombinant IL12. Mol. Cancer
Ther. 20 523–534 (2021). http://dx.doi.org/10.1136/jitc-2020-SITC2020.0709
31. Hsu, P. D., Lander, E. S. & Zhang, F. Development and Applications of CRISPR-Cas9 for Genome
Engineering. Cell 157, 1262–1278 (2014).
32. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science
346, 1258096 (2014). http://dx.doi.org/10.1126/science.1258096
33. Hung, M. E. & Leonard, J. N. A platform for actively loading cargo RNA to elucidate limiting steps
in EV-mediated delivery. J.Extracel. Vesicles 5, 31027 (2016).
http://dx.doi.org/10.3402/jev.v5.31027
34. Filipović, L., Kojadinović, M. &Popović, M. Exosomes and exosome-mimetics as targeted drug
carriers: Where we stand and what the future holds? J. Drug Deliv. Sci.Technol. 68, 103057 (2022).
35. Zipkin, M. Exosome redux. Nat. Biotechnol. 37, 1395–1400 (2019).
http://dx.doi.org/10.1038/s41587-019-0326-5