Recognition of exosomes and their role in new technologies
by Olesya Gusachenko
References
1. Pegtel, D. M. & Gould, S. J. Exosomes. Annu. Rev. Biochem. 88, 487514 (2019)
2. Hessvik, N. P. &Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life
Sci. 75, 193208 (2018)
3. Théry, C.et al.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a
position statement of the International Society for Extracellular Vesicles and update of the
MISEV2014 guidelines. J. Extracell. Vesicles7(1): 1535750 (2018)
4. Wasmuth, E. V., Januszyk, K. & Lima, C. D. Structure of an Rrp6-RNA exosome complex bound to
poly(A) RNA. Nature 511, 435439 (2014)
5. Trams, E. G., Lauter, C. J., Salem, N., Jr & Heine, U. Exfoliation of membrane ecto-enzymes in the
form of micro-vesicles. Biochim. Biophys. Acta 645, 6370 (1981)
6. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of
the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329339 (1983)
7. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in
vitro: selective externalization of the receptor. Cell 33, 967978 (1983)
8. Raposo, G. et al. B Lymphocytes Secrete Antigen-presenting Vesicles. Cell 183, (1996).
http://dx.doi.org/10.1084/jem.183.3.1161
9. Théry, C. et al. Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular
Compartment Distinct from Apoptotic Vesicles. J. Immunol. 166(12), 73097318 (2001).
http://dx.doi.org/10.4049/jimmunol.166.12.7309
10. Théry, C. et al. Molecular Characterization of Dendritic Cell-Derived Exosomes. J. Cell Biol. 147,
599610 (1999). http://dx.doi.org/10.1083/jcb.147.3.599
11. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic
cell derived exosomes. Nat. Med. 4,594600 (1998)
12. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of
genetic exchange between cells. Nat. Cell Biol. 9, 654659 (2007).
13. Kalluri, R. &LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science
367, (2020).
14. Doyle, L. & Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and
Methods for Exosome Isolation and Analysis. Cells 8, 727 (2019).
15. Ren, Y., Nie, L., Zhu, S. & Zhang, X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability
Enhancement. Int. J. Nanomedicine 17, 48614877 (2022). https://doi.org/10.2147/IJN.S382192
16. Song, J., Song, B., Yuan, L. & Yang, G. Multiplexed strategies toward clinical translation of
extracellular vesicles. Theranostics 12, 67406761 (2022).
17. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted
exosomes. Nat. Biotechnol. 29, 341345 (2011). http://dx.doi.org/10.1038/nbt.1807
18. Cooper, J. M. et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in
brains of transgenic mice. Mov. Disord. 29, 14761485 (2014).
http://dx.doi.org/10.1002/mds.25978
19. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice
following sustained dosing of extracellular vesicles derived from HEK293T cells. J.Extracell. Vesicles
6, 1324730 (2017). http://dx.doi.org/10.1080/20013078.2017.1324730
20. Wiklander, O. P. B., Brennan, M. Á., Lötvall, J., Breakefield, X. O. & El Andaloussi, S. Advances in
therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, (2019).
21. Yao, Y., Fu, C., Zhou, L., Mi, Q.-S. & Jiang, A. DC-Derived Exosomes for Cancer Immunotherapy.
Cancers 13, 3667 (2021). http://dx.doi.org/10.3390/cancers13153667
22. Canning, P., Alwan, A., Khalil, F., Zhang, Y. &Opara, E. C. Perspectives and Challenges on the
Potential Use of Exosomes in Bioartificial Pancreas Engineering. Ann. Biomed. Eng. 50, 11771186
(2022). http://dx.doi.org/10.1002/bit.27641
23. van Niel, G., D’Angelo, G. &Raposo, G. Shedding light on the cell biology of extracellular vesicles.
Nat. Rev. Mol. Cell Biol. 19, 213228 (2018).
24. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined
therapeutic properties. Mol. Ther. 29, 17291743 (2021).
http://dx.doi.org/10.1016/j.ymthe.2021.01.020
25. Mathivanan, S. et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from
the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell.
Proteomics 9, 197208 (2010).
26. Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-
induced endothelial cell activation. Cancer Res. 70, 16681678 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-09-2470
27. Claridge, B., Lozano, J., Poh, Q. H. & Greening, D. W. Development of extracellular vesicle
therapeutics: Challenges, considerations, and opportunities. Front. Cell Dev. Biol. 9, 734720 (2021).
http://dx.doi.org/10.3389/fcell.2021.734720
28. Parada, N., Romero-Trujillo, A., Georges, N. & Alcayaga-Miranda, F. Camouflage strategies for
therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 31, 6174 (2021).
http://dx.doi.org/10.1016/j.jare.2021.01.001
29. Gupta, D. et al. Amelioration of systemic inflammation via the display of two different decoy
protein receptors on extracellular vesicles. Nat. Biomed. Eng. 5, 10841098 (2021).
http://dx.doi.org/10.1038/s41551-021-00792-z
30. Lewis, N. D. et al. Exosome Surface Display of IL12 Results in Tumor-Retained Pharmacology with
Superior Potency and Limited Systemic Exposure Compared with Recombinant IL12. Mol. Cancer
Ther. 20 523534 (2021). http://dx.doi.org/10.1136/jitc-2020-SITC2020.0709
31. Hsu, P. D., Lander, E. S. & Zhang, F. Development and Applications of CRISPR-Cas9 for Genome
Engineering. Cell 157, 12621278 (2014).
32. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science
346, 1258096 (2014). http://dx.doi.org/10.1126/science.1258096
33. Hung, M. E. & Leonard, J. N. A platform for actively loading cargo RNA to elucidate limiting steps
in EV-mediated delivery. J.Extracel. Vesicles 5, 31027 (2016).
http://dx.doi.org/10.3402/jev.v5.31027
34. Filipović, L., Kojadinović, M. &Popović, M. Exosomes and exosome-mimetics as targeted drug
carriers: Where we stand and what the future holds? J. Drug Deliv. Sci.Technol. 68, 103057 (2022).
35. Zipkin, M. Exosome redux. Nat. Biotechnol. 37, 13951400 (2019).
http://dx.doi.org/10.1038/s41587-019-0326-5
36. Grossen, P. et al. Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic
acid antisense oligonucleotides. Eur. J. Pharm. Biopharm. 158, 198210 (2021).
http://dx.doi.org/10.1016/j.ejpb.2020.11.012
37. Gangadaran, P., Hong, C. M. &Ahn, B.-C. An Update on in Vivo Imaging of Extracellular Vesicles
as Drug Delivery Vehicles. Front. Pharmacol. 9, 169 (2018).
38. Aronson, S. J. et al. Prevalence and Relevance of Pre-Existing Anti-Adeno-Associated Virus
Immunity in the Context of Gene Therapy for CriglerNajjar Syndrome. Hum. Gene Ther. 30, 1297
1305 (2019).
39. Ortega, A., Martinez-Arroyo, O., Forner, M. J. & Cortes, R. Exosomes as Drug Delivery Systems:
Endogenous Nanovehicles for Treatment of Systemic Lupus Erythematosus. Pharmaceutics 13, 3
(2020).
40. Antimisiaris, S. G., Mourtas, S. &Marazioti, A. Exosomes and Exosome-Inspired Vesicles for
Targeted Drug Delivery. Pharmaceutics 10, (2018).
41. Somiya, M., Yoshioka, Y. &Ochiya, T. Biocompatibility of highly purified bovine milk-derived
extracellular vesicles. J.Extracell. Vesicles 7, 1440132 (2018).
42. Munagala, R., Aqil, F., Jeyabalan, J. & Gupta, R. C. Bovine milk-derived exosomes for drug
delivery. Cancer Lett. 371, 4861 (2016).
43. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug
delivery platform. Nat. Nanotechnol. 16, 748759 (2021). https://doi.org/10.1038/s41565-021-00931-2
44. Wang, Q. et al. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway
to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 75, 25202529 (2015).
45. Boukouris, S. &Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease
biomarkers. Proteomics Clin. Appl. 9, 358367 (2015).
46. Wang, X., Tian, L., Lu, J. & Ng, I. O.-L. Exosomes and cancer - Diagnostic and prognostic
biomarkers and therapeutic vehicle. Oncogenesis 11, 112 (2022).
http://dx.doi.org/10.1038/s41389-022-00431-5
47. Bari, E. et al. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free
Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells 7, 190 (2018).
http://dx.doi.org/10.3390/cells7110190
48. Huda, M. N. et al. Potential Use of Exosomes as Diagnostic Biomarkers and in Targeted Drug
Delivery: Progress in Clinical and Preclinical Applications. ACS Biomater Sci Eng 7, 21062149
(2021).
49. Rezaie, J., Feghhi, M. & Etemadi, T. A review on exosomes application in clinical trials: perspective,
questions, and challenges. Cell Commun. Signal. 20, 145 (2022). http://dx.doi.org/10.1186/s12964-
022-00959-4
50. Chen, Y.-S., Lin, E.-Y., Chiou, T.-W. &Harn, H.-J. Exosomes in clinical trial and their production in
compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi 32, 113120 (2020).
51. Gustafson, C. M. &Gammill, L. S. Extracellular Vesicles and Membrane Protrusions in
Developmental Signaling. J. Dev. Biol. 10, (2022)