CRISPR/Cas9, a decade of genome editing tools to fix the DNA

by Lúcia Santos

References

    1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (1979). 2012;337(6096). https://doi.org/10.1126/science.1225829 
    2. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 2013;8(11):2281–308.  https://doi.org/10.1038/nprot.2013.143 
    3. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Vol. 9, Nature Reviews Microbiology. 2011. https://doi.org/10.1038/nrmicro2577 
    4. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Vol. 18, Nature Reviews Microbiology. 2020. https://doi.org/10.1038/s41579-019-0299-x 
    5. Bhaya D, Davison M, Barrangou R. CRISPR-cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics. 2011;45. https://doi.org/10.1146/annurev-genet-110410-132430 
    6. Hynes AP, Villion M, Moineau S. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nature Communications.  2014;5.  https://doi.org/10.1038/ncomms5399 
    7. Liu Z, Dong H, Cui Y, Cong L, Zhang D. Application of different types of CRISPR/Cas-based systems in bacteria. Vol. 19, Microbial Cell Factories. 2020. https://doi.org/10.1186/s12934-020-01431-z
    8. Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Vol. 46, Annual Review of Biophysics. 2017. https://doi.org/10.1146/annurev-biophys-062215-010822 
    9. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587). https://doi.org/10.1038/nature16526 
    10. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science (1979). 2016;351(6268). https://doi.org/10.1126/science.aad5227 
    11. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550(7676).         https://doi.org/10.1016/j.bpj.2017.11.1082 
    12. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology. 2018;36(3). https://doi.org/10.1038/nbt.4066 
    13. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y hoon, et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nature Communications. 2018;9(1). https://doi.org/10.1038/s41467-018-05477-x 
    14. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine. 2018;24(8):1216–24.       https://doi.org/10.1038/s41591-018-0137-0 
    15. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science (1979). 2014;343(6176).             https://doi.org/10.1126/science.1247997 
    16. Trevino AE, Zhang F. Genome editing using cas9 nickases. Methods in Enzymology. 2014. https://doi.org/10.1016/B978-0-12-801185-0.00008-8 
    17. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546). https://doi.org/10.1038/nature14299 
    18. Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Molecular Therapy. 2016;24(3). https://doi.org/10.1038/mt.2015.218 
    19. Lee CM, Cradick TJ, Bao G. The neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Molecular Therapy. 2016;24(3).   https://doi.org/10.1038/mt.2016.8 
    20. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications. 2017;8.    https://doi.org/10.1038/ncomms14500 
    21. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, et al. Structure and Engineering of Francisella novicida Cas9. Cell. 2016;164(5).           https://doi.org/10.1016/j.cell.2016.01.039 
    22. Kleinstiver BP, Prew MS, Tsai SQ, Topkar V v., Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561).       https://doi.org/10.1038/nature14592 
    23. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science (1979). 2018;361(6408).   https://doi.org/10.1126/science.aas9129 
    24. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699).                        https://doi.org/10.1038/nature26155 
    25. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science (1979). 2020;368(6488).     https://doi.org/10.1126/science.aba8853 
    26. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology. 2018;36(8).            https://doi.org/10.1038/nbt.4192 
    27. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine. 2018;24(7).   https://doi.org/10.1038/s41591-018-0049-z 
    28. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Medicine. 2018;24(7).           https://doi.org/10.1038/s41591-018-0050-6 
    29. Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle un human cells. Nucleic Acids Research. 2004;32(12). https://doi.org/10.1093/nar/gkh703
    30. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4.   http://dx.doi.org/10.1038/nature17946 
    31. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science (1979). 2016;353(6305). https://doi.org/10.1126/science.aaf8729 
    32. Carrington B, Weinstein RN, Sood R. BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Cells. 2020;9(7).         https://doi.org/10.3390/cells9071690 
    33. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology. 2017;35(4). https://doi.org/10.1038/nbt.3803 
    34. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464–71. https://doi.org/10.1038/nature24644 
    35. Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology. 2020;38(7). https://doi.org/10.1038/s41587-020-0491-6   
    36. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology. 2020;38(7). https://doi.org/10.1038/s41587-020-0453-z 
    37. Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, Cassa CA, et al. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. 2020;182(2). https://doi.org/10.1016/j.cell.2020.05.037 
    38. Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology. 2021;39(1). https://doi.org/10.1038/s41587-020-0609-x 
    39. Anzalone A v., Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Vol. 576, Nature. 2019. 149–157 p. https://doi.org/10.1038/s41586-019-1711-4 
    40. Scholefield J, Harrison PT. Prime editing – an update on the field. Gene Therapy. 2021. https://doi.org/10.1038/s41434-021-00263-9 
    41. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021;184(22). https://doi.org/10.1016/j.cell.2021.09.018 
    42. Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, et al. Molecular Sciences Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. International Journal of Molecular Sciences. 2021;22(3327):1-41. https://doi.org/10.3390/ijms22073327 
    43. Anzalone A v., Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Vol. 38, Nature Biotechnology. 2020.   https://doi.org/10.1038/s41587-020-0561-9