CRISPR/Cas9, a decade of genome editing tools to fix the DNA
by Lúcia Santos
References
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (1979). 2012;337(6096). https://doi.org/10.1126/science.1225829
- Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143
- Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Vol. 9, Nature Reviews Microbiology. 2011. https://doi.org/10.1038/nrmicro2577
- Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Vol. 18, Nature Reviews Microbiology. 2020. https://doi.org/10.1038/s41579-019-0299-x
- Bhaya D, Davison M, Barrangou R. CRISPR-cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics. 2011;45. https://doi.org/10.1146/annurev-genet-110410-132430
- Hynes AP, Villion M, Moineau S. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nature Communications. 2014;5. https://doi.org/10.1038/ncomms5399
- Liu Z, Dong H, Cui Y, Cong L, Zhang D. Application of different types of CRISPR/Cas-based systems in bacteria. Vol. 19, Microbial Cell Factories. 2020. https://doi.org/10.1186/s12934-020-01431-z
- Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Vol. 46, Annual Review of Biophysics. 2017. https://doi.org/10.1146/annurev-biophys-062215-010822
- Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587). https://doi.org/10.1038/nature16526
- Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science (1979). 2016;351(6268). https://doi.org/10.1126/science.aad5227
- Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550(7676). https://doi.org/10.1016/j.bpj.2017.11.1082
- Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology. 2018;36(3). https://doi.org/10.1038/nbt.4066
- Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y hoon, et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nature Communications. 2018;9(1). https://doi.org/10.1038/s41467-018-05477-x
- Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine. 2018;24(8):1216–24. https://doi.org/10.1038/s41591-018-0137-0
- Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science (1979). 2014;343(6176). https://doi.org/10.1126/science.1247997
- Trevino AE, Zhang F. Genome editing using cas9 nickases. Methods in Enzymology. 2014. https://doi.org/10.1016/B978-0-12-801185-0.00008-8
- Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546). https://doi.org/10.1038/nature14299
- Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Molecular Therapy. 2016;24(3). https://doi.org/10.1038/mt.2015.218
- Lee CM, Cradick TJ, Bao G. The neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Molecular Therapy. 2016;24(3). https://doi.org/10.1038/mt.2016.8
- Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications. 2017;8. https://doi.org/10.1038/ncomms14500
- Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, et al. Structure and Engineering of Francisella novicida Cas9. Cell. 2016;164(5). https://doi.org/10.1016/j.cell.2016.01.039
- Kleinstiver BP, Prew MS, Tsai SQ, Topkar V v., Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561). https://doi.org/10.1038/nature14592
- Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science (1979). 2018;361(6408). https://doi.org/10.1126/science.aas9129
- Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556(7699). https://doi.org/10.1038/nature26155
- Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science (1979). 2020;368(6488). https://doi.org/10.1126/science.aba8853
- Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology. 2018;36(8). https://doi.org/10.1038/nbt.4192
- Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine. 2018;24(7). https://doi.org/10.1038/s41591-018-0049-z
- Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, et al. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Medicine. 2018;24(7). https://doi.org/10.1038/s41591-018-0050-6
- Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle un human cells. Nucleic Acids Research. 2004;32(12). https://doi.org/10.1093/nar/gkh703
- Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4. http://dx.doi.org/10.1038/nature17946
- Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science (1979). 2016;353(6305). https://doi.org/10.1126/science.aaf8729
- Carrington B, Weinstein RN, Sood R. BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Cells. 2020;9(7). https://doi.org/10.3390/cells9071690
- Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology. 2017;35(4). https://doi.org/10.1038/nbt.3803
- Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464–71. https://doi.org/10.1038/nature24644
- Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology. 2020;38(7). https://doi.org/10.1038/s41587-020-0491-6
- Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology. 2020;38(7). https://doi.org/10.1038/s41587-020-0453-z
- Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, Cassa CA, et al. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. 2020;182(2). https://doi.org/10.1016/j.cell.2020.05.037
- Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology. 2021;39(1). https://doi.org/10.1038/s41587-020-0609-x
- Anzalone A v., Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Vol. 576, Nature. 2019. 149–157 p. https://doi.org/10.1038/s41586-019-1711-4
- Scholefield J, Harrison PT. Prime editing – an update on the field. Gene Therapy. 2021. https://doi.org/10.1038/s41434-021-00263-9
- Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021;184(22). https://doi.org/10.1016/j.cell.2021.09.018
- Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, et al. Molecular Sciences Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. International Journal of Molecular Sciences. 2021;22(3327):1-41. https://doi.org/10.3390/ijms22073327
- Anzalone A v., Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Vol. 38, Nature Biotechnology. 2020. https://doi.org/10.1038/s41587-020-0561-9