New insight into phosphoproteome research  improves the in-depth understanding of honey bee biology

by Saboor Ahmad and Jianke Li

References

  1. Kolayli, S. and M. Keskin, Natural bee products and their apitherapeutic applications. Studies in Natural Products Chemistry, 2020. 66: p. 175-196. https://doi.org/10.1016/B978-0-12-817907-9.00007-6 
  2. Papa, G., et al., The honey bee Apis mellifera: An insect at the interface between human and ecosystem health. Biology, 2022. 11(2): p. 233. https://doi.org/10.3390/biology11020233 
  3. Steffan-Dewenter, I. and A. Kuhn, Honeybee foraging in differentially structured landscapes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003. 270(1515): p. 569-575. https://doi.org/10.1098/rspb.2002.2292 
  4. Hung, K.-L.J., et al., The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 2018. 285(1870): p. 20172140. https://doi.org/10.1098/rspb.2017.2140 
  5. Altaye, S.Z., et al., The emerging proteomic research facilitates in-depth understanding of the biology of honeybees. International journal of molecular sciences, 2019. 20(17): p. 4252. https://doi.org/10.3390/ijms20174252 
  6. Hora, Z.A., et al., Proteomics improves the new understanding of honeybee biology. Journal of agricultural and food chemistry, 2018. 66(14): p. 3605-3615.      https://doi.org/10.1021/acs.jafc.8b00772 
  7. Weinstock, G.M., et al., Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006. 443(7114): p. 931-949. https://doi.org/10.1038/nature05260 
  8. Hosp, F., et al., A double-barrel liquid chromatography-tandem mass spectrometry (LC-MS/MS) system to quantify 96 interactomes per day. Molecular & Cellular Proteomics, 2015. 14(7): p. 2030-2041. https://doi.org/10.1074/mcp.O115.049460 
  9. Li, J. and H.-J. Zhu, Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics of drug-metabolizing enzymes and transporters. Molecules, 2020. 25(11): p. 2718. https://doi.org/10.3390/molecules25112718 
  10. Low, T.Y., et al., Widening the bottleneck of phosphoproteomics: evolving strategies for phosphopeptide enrichment. Mass spectrometry reviews, 2021. 40(4): p. 309-333.     https://doi.org/10.1002/mas.21636 
  11. Yagüe, P., et al., Goals and challenges in bacterial phosphoproteomics. International Journal of Molecular Sciences, 2019. 20(22): p. 5678. https://doi.org/10.3390/ijms21249381 
  12. Sharma, K., et al., Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell reports, 2014. 8(5): p. 1583-1594.              https://doi.org/10.1016/j.celrep.2014.07.036 
  13. Feng, M., et al., Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Journal of proteomics, 2013. 87: p. 1-15.   https://doi.org/10.1016/j.jprot.2013.05.021 
  14. Gala, A., et al., Changes of proteome and phosphoproteome trigger embryo–larva transition of honeybee worker (Apis mellifera ligustica). Journal of proteomics, 2013. 78: p. 428-446. https://doi.org/10.1016/j.jprot.2012.10.012 
  15. Li, R., et al., Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC genomics, 2013. 14(1): p. 1-13. https://doi.org/10.1186/1471-2164-14-766 
  16. Lu, X., et al., Phosphoproteome analysis of hypopharyngeal glands of high royal jelly producing bee (Apis mellifera L.). Sci. Agric. Sin, 2013. 46: p. 5050-5057.
  17. Resende, V.M.F., et al., Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics, 2013. 13(17): p. 2638-2648.  https://doi.org/10.1002/pmic.201300038 
  18. Han, B., et al., In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species. Journal of proteome research, 2014. 13(12): p. 5928-5943.    https://doi.org/10.1021/pr500843j 
  19. Qi, Y., et al., Phosphoproteomic analysis of protein phosphorylation networks in the hypopharyngeal gland of honeybee workers (Apis mellifera ligustica). Journal of proteome research, 2015. 14(11): p. 4647-4661. https://doi.org/10.1021/acs.jproteome.5b00530 
  20. Fang, Y. and J. Li Phosphoproteome Characterization of Honeybee worker and drone during the embryogenesis. 二十一世纪第二届全国蜂业科技与蜂产业发展大会论文集摘要, 2016.
  21. Li, J., Comprehensive Membrane Proteome and Phosphoproteome Analyses Characterize Behavior Associated Brain Dynamics in Honeybee Workers. 二十一世纪第二届全国蜂业科技与蜂产业发展大会论文集摘要, 2016.
  22. Bezabih, G., et al., Phosphoproteome analysis reveals phosphorylation underpinnings in the brains of nurse and forager honeybees (Apis mellifera). Scientific reports, 2017. 7(1): p. 1-16. https://doi.org/10.1038/s41598-017-02192-3 
  23. Han, B., et al., Brain membrane proteome and phosphoproteome reveal molecular basis associating with nursing and foraging behaviors of honeybee workers. Journal of Proteome Research, 2017. 16(10): p. 3646-3663.            https://doi.org/10.1021/acs.jproteome.7b00371 
  24. Li, S. and J. Li, Comparative analysis of phosphoproteome between mandibular glands of high royal jelly producing bees and Italian bees. Scientia Agricultura Sinica, 2017. 50(23): p. 4656-4670. https://doi.org/10.3864/j.issn.0578-1752.2017.23.018 
  25. Ramadan, H. and J. Li, In-Depth Brain Phosphoproteome Study Reveals Neurobiological Underpinnings For Nurse Honeybee Workers (Apis mellifera ligustica). Fayoum J. Agric Res Dev, 2019. 33(1): p. 589-507.
  26. Ramadan, H. and J. Li. In-depth brain phosphoproteome study reveals neurobiological underpinnings for forager honeybee workers (Apis mellifera ligustica). in X International Agriculture Symposium, Agrosym 2019, Jahorina, Bosnia and Herzegovina, 3-6 October 2019. Proceedings. 2019. University of East Sarajevo, Faculty of Agriculture.
  27. Meng, L., et al., Phosphoproteomic basis of neuroplasticity in the antennal lobes influences the olfactory differences between A. mellifera and A. cerana honeybees. Journal of Proteomics, 2022. 251: p. 104413. https://doi.org/10.1016/j.jprot.2021.104413 
  28. Vallet, A., P. Cassier, and Y. Lensky, Ontogeny of the fine structure of the mandibular glands of the honeybee (Apis mellifera L.) workers and the pheromonal activity of 2-heptanone. Journal of Insect Physiology, 1991. 37(11): p. 789-804. https://doi.org/10.1016/0022-1910(91)90076-C 
  29. Fujita, T., et al., Functional analysis of the honeybee (Apis mellifera L.) salivary system using proteomics. Biochemical and Biophysical Research Communications, 2010. 397(4): p. 740-744. https://doi.org/10.1016/j.bbrc.2010.06.023 
  30. Conte, Y.L., et al., Larval salivary glands are a source of primer and releaser pheromone in honey bee (Apis mellifera L.). Naturwissenschaften, 2006. 93(5): p. 237-241.      https://doi.org/10.1007/s00114-006-0089-y 
  31. Simpson, J., The functions of the salivary glands of Apis mellifera. Journal of Insect Physiology, 1960. 4(2): p. 107-121. https://doi.org/10.1016/0022-1910(60)90073-1 
  32. Poiani, S.B. and C.D. Cruz-Landim, Morphological changes in the cephalic salivary glands of females and males of Apis mellifera and Scaptotrigona postica (Hymenoptera, Apidae). Journal of Biosciences, 2010. 35(2): p. 249-255. https://doi.org/10.1007/s12038-010-0029-z 
  33. Schönitzer, K. and P. Seifert, Anatomy and ultrastructure of the salivary gland in the thorax of the honeybee worker, Apis mellifera (Insecta, Hymenoptera). Zoomorphology, 1990. 109(4): p. 211-222. https://doi.org/10.1007/BF00312472 
  34. Hernández, L.G., et al., Worker honeybee brain proteome. Journal of proteome research, 2012. 11(3): p. 1485-1493. https://doi.org/10.1021/pr2007818 
  35. Whitfield, C.W., A.-M. Cziko, and G.E. Robinson, Gene expression profiles in the brain predict behavior in individual honey bees. Science, 2003. 302(5643): p. 296-299.        https://doi.org/10.1126/science.1086807 
  36. Garcia, L., et al., Proteomic analysis of honey bee brain upon ontogenetic and behavioral development. Journal of proteome research, 2009. 8(3): p. 1464-1473.            https://doi.org/10.1021/pr800823r 
  37. Faita, M.R., et al., Proteomic profiling of royal jelly produced by Apis mellifera L. exposed to food containing herbicide-based glyphosate. Chemosphere, 2022. 292: p. 133334.  https://doi.org/10.1016/j.chemosphere.2021.133334 
  38. Wehbe, R., et al., Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules, 2019. 24(16): p. 2997.    https://doi.org/10.3390/molecules24162997